StarRocks SQL Plan Manager 详解:稳定查询性能的利器

StarRocks SQL Plan Manager 详解:稳定查询性能的利器

starrocks StarRocks是一个开源的分布式数据分析引擎,用于处理大规模数据查询和分析。 - 功能:分布式数据分析;大规模数据查询;数据分析;数据仓库。 - 特点:高性能;可扩展;易于使用;支持多种数据源。 starrocks 项目地址: https://gitcode.com/gh_mirrors/st/starrocks

引言

在数据库系统中,查询优化器会根据数据分布和统计信息自动选择最优执行计划。然而,当数据量或统计信息发生变化时,优化器可能会选择不同的执行计划,导致查询性能不稳定。StarRocks 提供的 SQL Plan Manager (SPM) 功能正是为了解决这一问题而设计的。

什么是 SQL Plan Manager

SQL Plan Manager 是 StarRocks 3.5.0 版本引入的一项重要功能,它通过将查询与特定的执行计划绑定,防止因系统状态变化(主要是数据更新和统计更新)导致的查询计划变更,从而稳定查询性能。

核心价值

  1. 性能稳定性:确保关键查询始终使用最优执行计划
  2. 执行计划可控性:DBA 可以手动指定特定查询的执行计划
  3. 查询优化:通过绑定优化后的执行计划提升查询性能

工作原理

基本流程

  1. 创建基线:使用 CREATE BASELINE 命令将查询 SQL 与特定执行计划绑定
  2. 查询重写:当查询提交到 StarRocks 时,系统会自动匹配已保存的基线,匹配成功则使用基线中的执行计划

关键技术点

  1. SQL 指纹:系统会将 SQL 中的常量值替换为变量参数(如 t1.v1 > 1000 变为 t1.v1 > ?),提高 SQL 匹配的灵活性
  2. 计划绑定:可以绑定优化后的 SQL 或添加了 Hint 的 SQL
  3. 多基线选择:当查询匹配多个基线时,优化器会评估并选择最优的基线

实战应用

创建基线

-- 创建会话级基线,直接绑定自身查询计划
CREATE BASELINE
USING SELECT t1.v2, t2.v3 FROM t1 JOIN t2 ON t1.v2 = t2.v2 WHERE t1.v2 > 100;

-- 创建全局级基线,使用广播连接 Hint
CREATE GLOBAL BASELINE
USING SELECT t1.v2, t2.v3 FROM t1 JOIN[BROADCAST] t2 ON t1.v2 = t2.v2 WHERE t1.v2 > 100;

-- 将简单查询绑定到优化后的执行计划
CREATE BASELINE ON SELECT t1.v2, t2.v3 FROM t1, t2 WHERE t1.v2 = t2.v2 AND t1.v2 > 100
USING SELECT t1.v2, t2.v3 FROM t1 JOIN[BROADCAST] t2 on t1.v2 = t2.v2 where t1.v2 > 100;

管理基线

查看已有基线:

SHOW BASELINE;

删除不再需要的基线:

DROP BASELINE 140035;  -- 140035 是基线ID

启用查询重写

SET enable_sql_plan_manager_rewrite = true;

启用后,系统会自动将匹配的查询重写为基线中的执行计划。通过 EXPLAIN 可以验证是否使用了基线计划:

EXPLAIN SELECT t1.v2, t2.v3 FROM t1, t2 WHERE t1.v2 = t2.v2 AND t1.v1 > 20;

输出中的 Using baseline plan[id] 表示查询已使用指定的基线计划。

高级用法

对于复杂场景,可以使用 SPM 函数进行更精细的控制:

SPM 函数

  1. _spm_const_var:标记单个常量值
  2. _spm_const_list:标记多个常量值(常用于 IN 条件)

复杂查询绑定示例

WITH ss AS (
    SELECT i_item_id, sum(ss_ext_sales_price) total_sales
    FROM store_sales, item
    WHERE i_color IN (_spm_const_list(1)) AND ss_item_sk = i_item_sk
    GROUP BY i_item_id
),
cs AS (
    SELECT i_item_id, sum(cs_ext_sales_price) total_sales
    FROM catalog_sales, item
    WHERE i_color IN (_spm_const_list(2)) AND cs_item_sk = i_item_sk
    GROUP BY i_item_id
)
SELECT i_item_id, sum(total_sales) total_sales
FROM (SELECT * FROM ss UNION ALL SELECT * FROM cs) tmp1
GROUP BY i_item_id;

通过为不同的 IN 条件分配不同的参数ID(1和2),确保系统能正确区分和处理不同的条件。

最佳实践

  1. 关键查询优先:为性能敏感的关键业务查询创建基线
  2. 验证执行计划:绑定前确保执行计划的正确性和高效性
  3. 适度使用:避免过度使用导致管理复杂度增加
  4. 定期审查:随着数据变化,定期评估基线计划的适用性

未来展望

StarRocks 计划进一步增强 SPM 功能,包括:

  • 更强大的 SQL 计划稳定性检查
  • 固定查询计划的自动优化
  • 支持更多条件参数绑定方式
  • 增强的基线管理功能

总结

SQL Plan Manager 是 StarRocks 提供的一个强大工具,它通过查询计划绑定机制,有效解决了因数据变化导致的查询性能波动问题。无论是简单的点查询还是复杂的分析查询,SPM 都能提供稳定的性能保障。结合 SPM 函数,用户还可以实现更精细的查询控制,满足各种业务场景的需求。

对于追求稳定性能的 StarRocks 用户来说,合理使用 SQL Plan Manager 将是优化数据库性能的重要策略之一。

starrocks StarRocks是一个开源的分布式数据分析引擎,用于处理大规模数据查询和分析。 - 功能:分布式数据分析;大规模数据查询;数据分析;数据仓库。 - 特点:高性能;可扩展;易于使用;支持多种数据源。 starrocks 项目地址: https://gitcode.com/gh_mirrors/st/starrocks

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

符凡言Elvis

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值