Azure机器学习与SQL Server集成实战指南

Azure机器学习与SQL Server集成实战指南

MachineLearningNotebooks Python notebooks with ML and deep learning examples with Azure Machine Learning Python SDK | Microsoft MachineLearningNotebooks 项目地址: https://gitcode.com/gh_mirrors/ma/MachineLearningNotebooks

概述

在现代数据分析架构中,将机器学习能力直接集成到数据库系统中已成为一种高效的工作模式。本文详细介绍如何将Azure机器学习自动化机器学习(AutoML)功能与SQL Server无缝集成,使数据工程师和分析师能够直接在SQL环境中构建和部署机器学习模型。

技术背景

SQL Server 2017及2019版本通过sp_execute_external_script存储过程支持Python脚本执行,这为与Azure机器学习服务的集成提供了基础。这种集成方式具有以下优势:

  1. 数据无需离开数据库环境
  2. 可直接利用SQL Server的强大数据处理能力
  3. 简化了机器学习模型的部署流程

环境准备

基础软件要求

  • SQL Server 2017(Windows)或2019(Windows/Linux)
  • Azure Data Studio或SQL Server Management Studio
  • Python环境(已集成在SQL Server中)

注意:SQL Server 2017 Linux版本不支持此集成方案

使用Azure Data Studio配置

1. 初始设置

首先创建一个名为"automl"的数据库作为工作环境。建议使用专用数据库以避免与其他应用产生冲突。

2. Python库安装

关键Python依赖包括:

  • azureml-sdk[automl]包
  • numpy和sklearn的最新版本

这些库将安装在SQL Server的Python服务目录中,确保使用正确的Python解释器路径。

使用SQL Server Management Studio配置

Windows环境配置步骤

  1. 启用外部脚本执行功能:

    sp_configure 'external scripts enabled',1 
    reconfigure with override
    
  2. 安装必要的Python包:

    cd "C:\Program Files\Microsoft SQL Server"
    cd "MSSQL14.MSSQLSERVER\PYTHON_SERVICES"
    python.exe -m pip install azureml-sdk[automl]
    
  3. 防火墙配置:需允许SQL Server的R本地用户账户访问网络

Linux环境特殊配置

在Linux环境下,Python包安装路径不同:

sudo /opt/mssql/mlservices/bin/python/python -m pip install azureml-sdk[automl]

Azure机器学习工作区配置

  1. 创建Azure机器学习工作区

  2. 生成config.json配置文件,包含:

    • 订阅ID
    • 资源组名称
    • 工作区名称
  3. 创建服务主体用于认证:

    az ad sp create-for-rbac --name principlename --password password
    

能源需求预测实战案例

数据准备

使用纽约市能源需求数据集(nyc_energy.csv),包含以下关键字段:

  • 时间戳
  • 能源需求量
  • 温度等环境因素

通过SQL Server Management Studio的"导入平面文件"功能将数据加载到数据库。

模型训练

执行TrainEnergyDemand.sql脚本将:

  1. 自动尝试多种机器学习算法
  2. 评估各算法性能
  3. 选择最佳模型保存

预测与评估

  • ForecastEnergyDemand.sql:使用训练好的模型进行预测
  • GetMetrics.sql:获取各模型训练过程中的详细评估指标

最佳实践建议

  1. 性能优化:对于大型数据集,考虑在SQL Server中预先进行数据采样和特征工程
  2. 安全考虑:妥善保管服务主体凭证,定期轮换
  3. 资源监控:训练过程中监控SQL Server资源使用情况
  4. 模型更新:建立定期重新训练模型的机制

常见问题排查

  1. 脚本执行失败:检查SQL Server的Python环境是否配置正确
  2. 连接问题:验证服务主体权限和网络连接
  3. 性能问题:对于复杂模型,考虑增加SQL Server资源配置

通过本文介绍的集成方案,数据分析团队可以在熟悉的SQL环境中直接利用Azure机器学习的高级功能,大幅提升工作效率和模型部署速度。

MachineLearningNotebooks Python notebooks with ML and deep learning examples with Azure Machine Learning Python SDK | Microsoft MachineLearningNotebooks 项目地址: https://gitcode.com/gh_mirrors/ma/MachineLearningNotebooks

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

资源下载链接为: https://pan.quark.cn/s/f1ead55c4354 以下标题“H5页面模板源码,很不错的例子”暗示了我们讨论的主题是关于HTML5页面模板的源代码。HTML5是现代网页开发的核心技术,它提供了丰富的功能和元素,让开发者能够构建出更具交互性、动态性和响应式的网页。“很不错的例子”表明这些源码不仅具有实用性,还具备一定的教学意义,既可以作为项目开发的直接素材,也能供学习参考。 在描述“H5页面模板源码,非常酷炫的HTML5模板,可以直接使用,也可以参考学习”中,“非常酷炫”意味着这些模板可能融合了诸多高级特性,例如动画效果、媒体元素的运用以及响应式设计等,这些都是HTML5技术的优势所在。可以直接使用表明用户无需从零开始编写代码,能迅速搭建出吸引人的网页。同时,这些模板也适合学习,用户通过查看源代码可以了解特定设计和功能的实现方式,从而提升自身的HTML5开发能力。 标签“H5 手机网页 H5源代码 手机html”进一步明确了主题。“H5”是HTML5的简称,“手机网页”和“手机html”则强调这些模板是针对移动设备优化的。在如今移动优先的时代,适应各种屏幕尺寸和触摸操作的网页设计极为重要。这表明这些源码很可能是响应式的,能够根据设备自动调整布局,以适配手机、平板电脑等多种设备。 从“压缩包文件的文件名称列表”来看,虽然无法直接从文件名得知具体源码内容,但可以推测这些文件可能包含多种HTML5模板示例。“不错的样子.txt”可能是一个介绍或说明文件,对模板进行简要描述或提供使用指南。而“1-30”这样的命名方式可能意味着有30个不同的模板实例,每个模板对应一个独立文件,涵盖多种设计风格和功能,为学习和实践提供了全面的平台。 总的来说,这个资源集合为HTML5开发者或初学者提供了一套实用且酷炫的移动网页模板源代码。这些模板既可以直接应用于项目
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

符凡言Elvis

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值