SwinTransformer/Video-Swin-Transformer 模型运行参数定制指南

SwinTransformer/Video-Swin-Transformer 模型运行参数定制指南

引言

在计算机视觉领域,SwinTransformer 和 Video-Swin-Transformer 作为基于 Transformer 架构的创新模型,在图像和视频理解任务中表现出色。本文将深入探讨如何在这些模型中自定义运行参数,包括优化方法、学习率策略、工作流程和钩子机制,帮助用户根据特定需求调整模型训练过程。

优化方法定制

PyTorch 内置优化器使用

SwinTransformer 系列模型支持所有 PyTorch 原生优化器,配置方式简单直观:

optimizer = dict(type='Adam', lr=0.0003, weight_decay=0.0001)

关键参数说明:

  • type: 指定优化器类型(如SGD、Adam等)
  • lr: 基础学习率,影响模型参数更新幅度
  • weight_decay: L2正则化系数,防止过拟合

对于 Adam 优化器的完整参数配置示例:

optimizer = dict(
    type='Adam', 
    lr=0.001, 
    betas=(0.9, 0.999),
    eps=1e-08,
    weight_decay=0,
    amsgrad=False
)

自定义优化器开发

1. 定义新优化器

mmaction/core/optimizer/my_optimizer.py 中实现:

from mmcv.runner import OPTIMIZERS
from torch.optim import Optimizer

@OPTIMIZERS.register_module()
class MyOptimizer(Optimizer):
    def __init__(self, params, a, b, c, **kwargs):
        # 实现优化器逻辑
        pass
2. 注册优化器

通过修改 mmaction/core/optimizer/__init__.py

from .my_optimizer import MyOptimizer

或配置文件中指定:

custom_imports = dict(
    imports=['mmaction.core.optimizer.my_optimizer'],
    allow_failed_imports=False
)
3. 配置使用
optimizer = dict(type='MyOptimizer', a=1.0, b=0.5, c=0.1)

高级优化技巧

  1. 梯度裁剪:稳定训练过程
optimizer_config = dict(grad_clip=dict(max_norm=35, norm_type=2))
  1. 动量调度:与学习率调度配合
momentum_config = dict(
    policy='cyclic',
    target_ratio=(0.85/0.95, 1),
    cyclic_times=1,
    step_ratio_up=0.4
)

学习率策略定制

SwinTransformer 支持多种学习率调整策略:

  1. 多项式衰减
lr_config = dict(
    policy='poly',
    power=0.9,
    min_lr=1e-4,
    by_epoch=False
)
  1. 余弦退火
lr_config = dict(
    policy='CosineAnnealing',
    warmup='linear',
    warmup_iters=1000,
    warmup_ratio=1.0/10,
    min_lr_ratio=1e-5
)

工作流程定制

默认训练流程:

workflow = [('train', 1)]

添加验证阶段:

workflow = [('train', 1), ('val', 1)]

注意事项:

  • 验证阶段不更新模型参数
  • total_epochs 仅控制训练周期数
  • 验证工作流影响的是 after_val_epoch 钩子

钩子机制详解

自定义钩子开发

  1. 创建钩子类
from mmcv.runner import HOOKS, Hook

@HOOKS.register_module()
class MyHook(Hook):
    def __init__(self, a, b):
        self.a = a
        self.b = b
    
    def before_train_epoch(self, runner):
        print(f'Before epoch: a={self.a}, b={self.b}')
  1. 注册与使用
custom_hooks = [
    dict(type='MyHook', a=1, b=2, priority='NORMAL')
]

内置钩子配置

  1. 模型检查点
checkpoint_config = dict(
    interval=1,
    max_keep_ckpts=5,
    save_optimizer=True
)
  1. 日志记录
log_config = dict(
    interval=50,
    hooks=[
        dict(type='TextLoggerHook'),
        dict(type='TensorboardLoggerHook')
    ]
)
  1. 验证配置
evaluation = dict(
    interval=1,
    metrics=['top_k_accuracy', 'mean_class_accuracy'],
    save_best='top_k_accuracy'
)

结语

通过本文介绍的参数定制方法,用户可以充分发挥 SwinTransformer 和 Video-Swin-Transformer 模型的潜力,针对不同任务和数据集调整训练过程。建议从基础配置开始,逐步尝试更高级的优化策略,以找到最适合特定场景的参数组合。

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

虞怀灏Larina

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值