SwinTransformer/Video-Swin-Transformer 模型运行参数定制指南
引言
在计算机视觉领域,SwinTransformer 和 Video-Swin-Transformer 作为基于 Transformer 架构的创新模型,在图像和视频理解任务中表现出色。本文将深入探讨如何在这些模型中自定义运行参数,包括优化方法、学习率策略、工作流程和钩子机制,帮助用户根据特定需求调整模型训练过程。
优化方法定制
PyTorch 内置优化器使用
SwinTransformer 系列模型支持所有 PyTorch 原生优化器,配置方式简单直观:
optimizer = dict(type='Adam', lr=0.0003, weight_decay=0.0001)
关键参数说明:
type
: 指定优化器类型(如SGD、Adam等)lr
: 基础学习率,影响模型参数更新幅度weight_decay
: L2正则化系数,防止过拟合
对于 Adam 优化器的完整参数配置示例:
optimizer = dict(
type='Adam',
lr=0.001,
betas=(0.9, 0.999),
eps=1e-08,
weight_decay=0,
amsgrad=False
)
自定义优化器开发
1. 定义新优化器
在 mmaction/core/optimizer/my_optimizer.py
中实现:
from mmcv.runner import OPTIMIZERS
from torch.optim import Optimizer
@OPTIMIZERS.register_module()
class MyOptimizer(Optimizer):
def __init__(self, params, a, b, c, **kwargs):
# 实现优化器逻辑
pass
2. 注册优化器
通过修改 mmaction/core/optimizer/__init__.py
:
from .my_optimizer import MyOptimizer
或配置文件中指定:
custom_imports = dict(
imports=['mmaction.core.optimizer.my_optimizer'],
allow_failed_imports=False
)
3. 配置使用
optimizer = dict(type='MyOptimizer', a=1.0, b=0.5, c=0.1)
高级优化技巧
- 梯度裁剪:稳定训练过程
optimizer_config = dict(grad_clip=dict(max_norm=35, norm_type=2))
- 动量调度:与学习率调度配合
momentum_config = dict(
policy='cyclic',
target_ratio=(0.85/0.95, 1),
cyclic_times=1,
step_ratio_up=0.4
)
学习率策略定制
SwinTransformer 支持多种学习率调整策略:
- 多项式衰减:
lr_config = dict(
policy='poly',
power=0.9,
min_lr=1e-4,
by_epoch=False
)
- 余弦退火:
lr_config = dict(
policy='CosineAnnealing',
warmup='linear',
warmup_iters=1000,
warmup_ratio=1.0/10,
min_lr_ratio=1e-5
)
工作流程定制
默认训练流程:
workflow = [('train', 1)]
添加验证阶段:
workflow = [('train', 1), ('val', 1)]
注意事项:
- 验证阶段不更新模型参数
total_epochs
仅控制训练周期数- 验证工作流影响的是
after_val_epoch
钩子
钩子机制详解
自定义钩子开发
- 创建钩子类:
from mmcv.runner import HOOKS, Hook
@HOOKS.register_module()
class MyHook(Hook):
def __init__(self, a, b):
self.a = a
self.b = b
def before_train_epoch(self, runner):
print(f'Before epoch: a={self.a}, b={self.b}')
- 注册与使用:
custom_hooks = [
dict(type='MyHook', a=1, b=2, priority='NORMAL')
]
内置钩子配置
- 模型检查点:
checkpoint_config = dict(
interval=1,
max_keep_ckpts=5,
save_optimizer=True
)
- 日志记录:
log_config = dict(
interval=50,
hooks=[
dict(type='TextLoggerHook'),
dict(type='TensorboardLoggerHook')
]
)
- 验证配置:
evaluation = dict(
interval=1,
metrics=['top_k_accuracy', 'mean_class_accuracy'],
save_best='top_k_accuracy'
)
结语
通过本文介绍的参数定制方法,用户可以充分发挥 SwinTransformer 和 Video-Swin-Transformer 模型的潜力,针对不同任务和数据集调整训练过程。建议从基础配置开始,逐步尝试更高级的优化策略,以找到最适合特定场景的参数组合。
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考