MMAction2自定义数据集开发指南

MMAction2自定义数据集开发指南

mmaction2 OpenMMLab's Next Generation Video Understanding Toolbox and Benchmark mmaction2 项目地址: https://gitcode.com/gh_mirrors/mm/mmaction2

概述

在视频理解领域,使用自定义数据集进行模型训练是常见需求。本文将详细介绍如何在MMAction2框架中实现自定义数据集的集成,包括视频数据集、关键点数据集等多种类型的数据处理方式。

MMAction2数据集架构解析

MMAction2采用分层设计的Dataset类架构,不同任务类型对应不同的数据集实现:

  1. 基础数据集类BaseDataset提供核心数据加载和预处理功能
  2. 动作识别专用类BaseActionDataset扩展基础功能,支持视频和帧序列处理
  3. 任务特定类:如VideoDatasetAVADataset等针对不同任务优化

关键方法说明

  • load_data_list():从标注文件加载数据列表
  • get_data_info():获取指定索引的数据样本
  • __getitem__():完整的数据获取管道,包含预处理流程

自定义视频数据集实现

基本实现步骤

  1. 继承合适的基类(如VideoDataset
  2. 实现load_data_list()方法
  3. 确保返回的数据字典包含必要字段

数据字段要求

不同任务对数据字段有不同要求:

动作识别任务

  • filename:视频文件路径
  • label:动作类别标签

时空动作检测任务

  • frame_dir:帧序列目录
  • video_id:视频唯一标识
  • timestamp:时间戳
  • gt_bboxes:边界框标注
  • gt_labels:动作标签

示例代码结构

class CustomVideoDataset(VideoDataset):
    def load_data_list(self):
        data_list = []
        # 解析自定义标注文件
        for item in annotations:
            data_list.append({
                'filename': item['video_path'],
                'label': item['category_id'],
                # 可添加自定义字段
                'extra_info': item.get('metadata', {})
            })
        return data_list

自定义关键点数据集实现

支持的关键点格式

MMAction2原生支持三种关键点格式:

  1. COCO格式(17个关键点)
  2. NTURGB+D格式(25个关键点)
  3. OpenPose格式(18个关键点)

自定义关键点配置

当使用非标准关键点格式时,需要配置以下内容:

  1. 图结构定义

    • 关键点数量
    • 节点连接关系(inward连接)
    • 中心节点指定
  2. 骨骼对定义

    • 关节到骨骼的映射关系
    • 对称关系定义

配置示例

# 自定义图结构配置
custom_layout = {
    'num_node': 20,  # 关键点数量
    'inward': [(0,1),(1,2),...],  # 连接关系
    'center': 0  # 中心节点
}

# 骨骼对配置
custom_pairs = (
    (0,0),(1,0),(2,1),...
)

模型配置调整

在模型配置中指定自定义格式:

model = dict(
    backbone=dict(
        graph_cfg=dict(layout='custom_layout', mode='spatial')),
    ...
)

train_pipeline = [
    dict(type='GenSkeFeat', dataset='custom_layout'),
    ...
]

最佳实践建议

  1. 数据验证:实现数据加载后,建议可视化检查样本是否正确解析
  2. 性能优化:对于大型数据集,考虑使用缓存机制加速加载
  3. 格式转换:复杂标注格式建议先转换为中间格式再处理
  4. 错误处理:在数据加载中加入健壮性检查,处理异常样本

常见问题解决方案

  1. 字段缺失错误:检查pipeline各阶段所需字段是否在数据样本中提供
  2. 关键点不匹配:确认自定义布局与实际的标注点顺序一致
  3. 性能瓶颈:对于视频数据,考虑使用更高效的解码后端

通过本文介绍的方法,开发者可以灵活地将各种格式的视频和动作数据集成到MMAction2框架中,充分利用其丰富的算法库进行模型训练和评估。

mmaction2 OpenMMLab's Next Generation Video Understanding Toolbox and Benchmark mmaction2 项目地址: https://gitcode.com/gh_mirrors/mm/mmaction2

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

陶影嫚Dwight

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值