MMAction2自定义数据集开发指南
概述
在视频理解领域,使用自定义数据集进行模型训练是常见需求。本文将详细介绍如何在MMAction2框架中实现自定义数据集的集成,包括视频数据集、关键点数据集等多种类型的数据处理方式。
MMAction2数据集架构解析
MMAction2采用分层设计的Dataset类架构,不同任务类型对应不同的数据集实现:
- 基础数据集类:
BaseDataset
提供核心数据加载和预处理功能 - 动作识别专用类:
BaseActionDataset
扩展基础功能,支持视频和帧序列处理 - 任务特定类:如
VideoDataset
、AVADataset
等针对不同任务优化
关键方法说明
load_data_list()
:从标注文件加载数据列表get_data_info()
:获取指定索引的数据样本__getitem__()
:完整的数据获取管道,包含预处理流程
自定义视频数据集实现
基本实现步骤
- 继承合适的基类(如
VideoDataset
) - 实现
load_data_list()
方法 - 确保返回的数据字典包含必要字段
数据字段要求
不同任务对数据字段有不同要求:
动作识别任务:
filename
:视频文件路径label
:动作类别标签
时空动作检测任务:
frame_dir
:帧序列目录video_id
:视频唯一标识timestamp
:时间戳gt_bboxes
:边界框标注gt_labels
:动作标签
示例代码结构
class CustomVideoDataset(VideoDataset):
def load_data_list(self):
data_list = []
# 解析自定义标注文件
for item in annotations:
data_list.append({
'filename': item['video_path'],
'label': item['category_id'],
# 可添加自定义字段
'extra_info': item.get('metadata', {})
})
return data_list
自定义关键点数据集实现
支持的关键点格式
MMAction2原生支持三种关键点格式:
- COCO格式(17个关键点)
- NTURGB+D格式(25个关键点)
- OpenPose格式(18个关键点)
自定义关键点配置
当使用非标准关键点格式时,需要配置以下内容:
-
图结构定义:
- 关键点数量
- 节点连接关系(inward连接)
- 中心节点指定
-
骨骼对定义:
- 关节到骨骼的映射关系
- 对称关系定义
配置示例
# 自定义图结构配置
custom_layout = {
'num_node': 20, # 关键点数量
'inward': [(0,1),(1,2),...], # 连接关系
'center': 0 # 中心节点
}
# 骨骼对配置
custom_pairs = (
(0,0),(1,0),(2,1),...
)
模型配置调整
在模型配置中指定自定义格式:
model = dict(
backbone=dict(
graph_cfg=dict(layout='custom_layout', mode='spatial')),
...
)
train_pipeline = [
dict(type='GenSkeFeat', dataset='custom_layout'),
...
]
最佳实践建议
- 数据验证:实现数据加载后,建议可视化检查样本是否正确解析
- 性能优化:对于大型数据集,考虑使用缓存机制加速加载
- 格式转换:复杂标注格式建议先转换为中间格式再处理
- 错误处理:在数据加载中加入健壮性检查,处理异常样本
常见问题解决方案
- 字段缺失错误:检查pipeline各阶段所需字段是否在数据样本中提供
- 关键点不匹配:确认自定义布局与实际的标注点顺序一致
- 性能瓶颈:对于视频数据,考虑使用更高效的解码后端
通过本文介绍的方法,开发者可以灵活地将各种格式的视频和动作数据集成到MMAction2框架中,充分利用其丰富的算法库进行模型训练和评估。
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考