3D-Photo-Inpainting 项目使用教程
1. 项目目录结构及介绍
3d-photo-inpainting/
├── LICENSE
├── README.md
├── argument.yml
├── bilateral_filtering.py
├── boostmonodepth_utils.py
├── download.sh
├── main.py
├── mesh.py
├── mesh_tools.py
├── networks/
│ ├── __init__.py
│ └── ...
├── pyproject.toml
├── requirements.txt
├── utils.py
└── ...
目录结构说明
- LICENSE: 项目许可证文件。
- README.md: 项目的基本介绍和使用说明。
- argument.yml: 项目的配置文件,用于设置运行时的参数。
- bilateral_filtering.py: 双边滤波相关的代码文件。
- boostmonodepth_utils.py: 用于单目深度估计的工具代码。
- download.sh: 用于下载模型权重的脚本。
- main.py: 项目的启动文件,用于执行3D照片生成的主要逻辑。
- mesh.py: 与3D网格生成相关的代码。
- mesh_tools.py: 3D网格处理的工具代码。
- networks/: 包含深度学习网络模型的代码。
- pyproject.toml: Python项目的配置文件。
- requirements.txt: 项目依赖的Python库列表。
- utils.py: 项目中使用的各种工具函数。
2. 项目的启动文件介绍
main.py
main.py
是项目的启动文件,负责执行3D照片生成的核心逻辑。用户可以通过命令行调用此文件,并根据配置文件中的参数生成3D照片。
使用方法
python main.py --config argument.yml
主要功能
- 读取配置文件: 从
argument.yml
中读取运行参数。 - 加载模型: 加载预训练的深度估计模型和图像修复模型。
- 生成3D照片: 根据输入的RGB-D图像生成3D照片,并保存结果。
3. 项目的配置文件介绍
argument.yml
argument.yml
是项目的配置文件,用于设置运行时的各种参数。用户可以根据需要修改此文件中的参数,以调整3D照片生成的过程。
配置文件示例
# 输入图像路径
input_image_path: "image/moon.jpg"
# 输出路径
output_path: "output/"
# 深度图格式
depth_format: "png"
# 是否需要MiDaS深度估计
require_midas: False
# 其他参数...
主要配置项
- input_image_path: 输入图像的路径。
- output_path: 输出结果的保存路径。
- depth_format: 深度图的格式,可以是
png
或npy
。 - require_midas: 是否需要使用MiDaS进行深度估计。
通过修改这些配置项,用户可以灵活地调整3D照片生成的过程,以满足不同的需求。
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考