LHM项目使用与启动教程
1. 项目介绍
LHM(Large Animatable Human Reconstruction Model)是一个基于单张图片实现秒级3D重建的开源项目。该项目由阿里巴巴集团Tongyi Lab开发,旨在提供一套完整的从图片到3D模型重建的解决方案。LHM项目支持多种模型,包括LHM-500M、LHM-1B等,能够根据输入图片重建出高质量的3D人体模型。
2. 项目快速启动
环境准备
- Python 3.10
- CUDA 11.8 或 CUDA 12.1
- NVIDIA GPU(至少24GB显存)
克隆仓库
git clone git@github.com:aigc3d/LHM.git
cd LHM
Windows环境下安装
- 设置虚拟环境
打开命令提示符(CMD),导航到项目文件夹,并运行以下命令:
python -m venv lhm_env
- 激活虚拟环境并安装依赖
lhm_env\Scripts\activate
sh ./install_cu118.sh # 或者 sh ./install_cu121.sh
pip install -r requirements.txt
- 运行应用
python ./app.py
Linux环境下安装
- 下载Docker镜像
wget -P ./lhm_cuda_dockers https://virutalbuy-public.oss-cn-hangzhou.aliyuncs.com/share/aigc3d/data/for_lingteng/LHM/LHM_Docker/lhm_cuda121.tar
- 加载Docker镜像并运行
sudo docker load -i ./lhm_cuda_dockers/lhm_cuda121.tar
sudo docker run -p 7860:7860 -v PATH/FOLDER:DOCKER_WORKSPACES -it lhm:cuda_121 /bin/bash
3. 应用案例和最佳实践
- 案例一:使用LHM模型重建个人3D模型,用于虚拟现实(VR)或增强现实(AR)应用。
- 案例二:集成LHM模型到现有应用程序中,为用户提供定制化的3D角色。
最佳实践:为了获得更稳定的重建效果,建议使用高质量的输入图片,并且保持模型与输入图片的尺寸比例一致。
4. 典型生态项目
LHM项目可以与以下开源项目结合使用,以实现更丰富的功能:
- ComfyUI:一个用于自定义视频动画的图形界面。
- ModelScope:阿里巴巴开源的模型服务平台,提供多种预训练模型。
- HuggingFace:一个流行的机器学习模型共享平台,提供在线演示和模型权重下载服务。
以上就是LHM项目的基本使用教程,希望对您有所帮助!
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考