DGC-Net项目教程
DGC-Net 项目地址: https://gitcode.com/gh_mirrors/dg/DGC-Net
1. 项目目录结构及介绍
DGC-Net项目是一个基于PyTorch的实现,用于获取两个视图之间的密集像素对应关系。项目的目录结构如下:
data
: 存储项目所需的数据集。imgs
: 存储处理后的图像文件。model
: 包含模型定义和训练相关的代码。utils
: 存储一些工具函数和类。.gitignore
: 定义Git应该忽略的文件和目录。LICENSE
: 项目的许可文件。README.md
: 项目的说明文档。dgc_inference.ipynb
: Jupyter笔记本,用于演示推理过程。eval.py
: 脚本文件,用于在HPatches数据集上评估模型。requirements.txt
: 列出了项目运行所需的Python包。train.py
: 脚本文件,用于训练DGC-Net或DGCM-Net模型。
2. 项目的启动文件介绍
项目的启动主要是通过train.py
和eval.py
两个脚本文件来完成的。
-
train.py
: 用于从 scratch 训练DGC-Net或DGCM-Net模型。运行该文件之前,需要下载并设置TokyoTimeMachine
数据集的路径。使用以下命令启动训练:python train.py --image-data-path /path/to/TokyoTimeMachine
-
eval.py
: 用于在HPatches数据集上评估预训练模型的性能。在运行该文件之前,需要下载HPatches数据集和预训练模型,并设置数据集的路径。使用以下命令启动评估:python eval.py --image-data-path /path/to/hpatches-geometry
3. 项目的配置文件介绍
项目的配置主要通过requirements.txt
文件来管理。
-
requirements.txt
: 该文件列出了项目运行所需的Python包。在开始项目之前,应确保安装了这些依赖项。可以使用以下命令安装所有依赖:pip install -r requirements.txt
确保按照上述步骤操作,您应该能够顺利地运行和配置DGC-Net项目。
DGC-Net 项目地址: https://gitcode.com/gh_mirrors/dg/DGC-Net