FUNIT 项目使用教程

FUNIT 项目使用教程

FUNIT Translate images to unseen domains in the test time with few example images. FUNIT 项目地址: https://gitcode.com/gh_mirrors/fu/FUNIT

1. 项目的目录结构及介绍

FUNIT(Few-Shot Unsupervised Image-to-Image Translation)项目是一个基于少量样本进行无监督图像到图像转换的开源项目。以下是项目的目录结构及各部分的简要介绍:

FUNIT/
├── configs/             # 配置文件目录
├── datasets/            # 数据集目录
├── docs/                # 文档目录
├── images/              # 存储输入输出图像的目录
├── tools/               # 工具脚本目录
├── .gitignore           # Git忽略文件
├── LICENSE.md           # 许可证文件
├── README.md            # 项目说明文件
├── blocks.py            # 网络模块定义
├── data.py              # 数据处理相关
├── funit_model.py       # FUNIT模型定义
├── networks.py          # 网络结构定义
├── test_k_shot.py       # 测试脚本
├── train.py             # 训练脚本
├── trainer.py           # 训练器定义
└── utils.py             # 工具函数

2. 项目的启动文件介绍

FUNIT项目的启动主要涉及两个脚本:train.pytest_k_shot.py

  • train.py:负责启动模型的训练过程。通过指定配置文件,该脚本可以初始化训练环境、加载数据集、建立模型并开始训练。

  • test_k_shot.py:用于测试预训练模型。用户可以指定一个输入图像和一个类别的样本图像,脚本会将输入图像转换成目标类别的样式。

3. 项目的配置文件介绍

配置文件位于configs/目录下,是YAML格式的文件。这些文件包含了项目运行所需的参数设置,如模型结构、训练参数、数据加载方式等。

例如,funit_animals.yaml可能包含以下内容:

# FUNIT 配置文件示例
train:
  dataset: datasets/animals
  crop_size: 128
  batch_size: 32
  num_workers: 8

val:
  dataset: datasets/animals_val

test:
  dataset: datasets/animals_test

model:
  name: FUNIT
  # 其他模型参数...

solver:
  lr: 0.0002
  beta1: 0.5
  beta2: 0.999
  # 其他优化器参数...

# 其他配置...

在运行train.pytest_k_shot.py时,用户可以通过--config参数指定使用的配置文件,从而改变项目的运行参数。

FUNIT Translate images to unseen domains in the test time with few example images. FUNIT 项目地址: https://gitcode.com/gh_mirrors/fu/FUNIT

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

薛珑佳

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值