FUNIT 项目使用教程
1. 项目的目录结构及介绍
FUNIT(Few-Shot Unsupervised Image-to-Image Translation)项目是一个基于少量样本进行无监督图像到图像转换的开源项目。以下是项目的目录结构及各部分的简要介绍:
FUNIT/
├── configs/ # 配置文件目录
├── datasets/ # 数据集目录
├── docs/ # 文档目录
├── images/ # 存储输入输出图像的目录
├── tools/ # 工具脚本目录
├── .gitignore # Git忽略文件
├── LICENSE.md # 许可证文件
├── README.md # 项目说明文件
├── blocks.py # 网络模块定义
├── data.py # 数据处理相关
├── funit_model.py # FUNIT模型定义
├── networks.py # 网络结构定义
├── test_k_shot.py # 测试脚本
├── train.py # 训练脚本
├── trainer.py # 训练器定义
└── utils.py # 工具函数
2. 项目的启动文件介绍
FUNIT项目的启动主要涉及两个脚本:train.py
和 test_k_shot.py
。
-
train.py
:负责启动模型的训练过程。通过指定配置文件,该脚本可以初始化训练环境、加载数据集、建立模型并开始训练。 -
test_k_shot.py
:用于测试预训练模型。用户可以指定一个输入图像和一个类别的样本图像,脚本会将输入图像转换成目标类别的样式。
3. 项目的配置文件介绍
配置文件位于configs/
目录下,是YAML格式的文件。这些文件包含了项目运行所需的参数设置,如模型结构、训练参数、数据加载方式等。
例如,funit_animals.yaml
可能包含以下内容:
# FUNIT 配置文件示例
train:
dataset: datasets/animals
crop_size: 128
batch_size: 32
num_workers: 8
val:
dataset: datasets/animals_val
test:
dataset: datasets/animals_test
model:
name: FUNIT
# 其他模型参数...
solver:
lr: 0.0002
beta1: 0.5
beta2: 0.999
# 其他优化器参数...
# 其他配置...
在运行train.py
或test_k_shot.py
时,用户可以通过--config
参数指定使用的配置文件,从而改变项目的运行参数。