Endo-FM 项目使用与配置教程

Endo-FM 项目使用与配置教程

Endo-FM [MICCAI'23] Foundation Model for Endoscopy Video Analysis via Large-scale Self-supervised Pre-train Endo-FM 项目地址: https://gitcode.com/gh_mirrors/end/Endo-FM

1. 项目的目录结构及介绍

Endo-FM 项目是一个用于内窥镜视频分析的开源项目。以下是项目的目录结构及其简要介绍:

  • assets/: 存放项目所需的资源文件,如图片、视频等。
  • checkpoints/: 存放预训练的模型权重文件。
  • data/: 存放数据集相关的文件,包括原始数据、预处理脚本和数据列表等。
  • environment.yaml: 用于创建项目环境的配置文件。
  • LICENSE: 项目使用的 Apache-2.0 许可文件。
  • README.md: 项目的说明文档。
  • scripts/: 存放项目运行脚本的目录。
  • timm/: 一个用于图像模型训练的库。
  • tools/: 存放项目所需的工具脚本。

2. 项目的启动文件介绍

项目的启动主要通过命令行脚本进行。以下是一些主要的启动脚本及其功能:

  • train_clips32k.sh: 启动预训练过程的脚本。
  • eval_finetune_polypdiag.sh: 对 PolypDiag 数据集进行微调评估的脚本。
  • test_finetune_polypdiag.sh: 对 PolypDiag 数据集进行测试的脚本。

3. 项目的配置文件介绍

项目的配置文件主要用于设置环境和模型训练的参数。以下是一些主要的配置文件及其功能:

  • environment.yaml: 用于创建 Anaconda 环境的配置文件。它包含了项目所需的所有 Python 包。
name: endofm
dependencies:
  - python=3.8
  - torch==1.8.0
  - torchvision==0.9.0
  - pillow==6.2.2
  - timm==0.4.12
  • train.py: 模型训练的配置文件。它包含了训练过程的各项参数,如批次大小、学习率、优化器等。
# 示例配置
config = {
    'batch_size': 16,
    'learning_rate': 0.001,
    'optimizer': 'Adam',
    'epochs': 10,
    # 更多配置...
}
  • train_clips32k.sh: 预训练过程的命令行配置脚本。它包含了预训练所需的命令和参数。
#!/bin/bash
cd Endo-FM
wget -P checkpoints/ https://github.com/kahnchana/svt/releases/download/v1.0/kinetics400_vitb_ssl.pth
bash scripts/train_clips32k.sh

使用这些配置文件,用户可以根据自己的需求调整项目设置,进行模型的训练和测试。

Endo-FM [MICCAI'23] Foundation Model for Endoscopy Video Analysis via Large-scale Self-supervised Pre-train Endo-FM 项目地址: https://gitcode.com/gh_mirrors/end/Endo-FM

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

薛珑佳

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值