Endo-FM 项目使用与配置教程
1. 项目的目录结构及介绍
Endo-FM 项目是一个用于内窥镜视频分析的开源项目。以下是项目的目录结构及其简要介绍:
assets/
: 存放项目所需的资源文件,如图片、视频等。checkpoints/
: 存放预训练的模型权重文件。data/
: 存放数据集相关的文件,包括原始数据、预处理脚本和数据列表等。environment.yaml
: 用于创建项目环境的配置文件。LICENSE
: 项目使用的 Apache-2.0 许可文件。README.md
: 项目的说明文档。scripts/
: 存放项目运行脚本的目录。timm/
: 一个用于图像模型训练的库。tools/
: 存放项目所需的工具脚本。
2. 项目的启动文件介绍
项目的启动主要通过命令行脚本进行。以下是一些主要的启动脚本及其功能:
train_clips32k.sh
: 启动预训练过程的脚本。eval_finetune_polypdiag.sh
: 对 PolypDiag 数据集进行微调评估的脚本。test_finetune_polypdiag.sh
: 对 PolypDiag 数据集进行测试的脚本。
3. 项目的配置文件介绍
项目的配置文件主要用于设置环境和模型训练的参数。以下是一些主要的配置文件及其功能:
environment.yaml
: 用于创建 Anaconda 环境的配置文件。它包含了项目所需的所有 Python 包。
name: endofm
dependencies:
- python=3.8
- torch==1.8.0
- torchvision==0.9.0
- pillow==6.2.2
- timm==0.4.12
train.py
: 模型训练的配置文件。它包含了训练过程的各项参数,如批次大小、学习率、优化器等。
# 示例配置
config = {
'batch_size': 16,
'learning_rate': 0.001,
'optimizer': 'Adam',
'epochs': 10,
# 更多配置...
}
train_clips32k.sh
: 预训练过程的命令行配置脚本。它包含了预训练所需的命令和参数。
#!/bin/bash
cd Endo-FM
wget -P checkpoints/ https://github.com/kahnchana/svt/releases/download/v1.0/kinetics400_vitb_ssl.pth
bash scripts/train_clips32k.sh
使用这些配置文件,用户可以根据自己的需求调整项目设置,进行模型的训练和测试。
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考