CLIP-ES 项目使用教程
CLIP-ES 项目地址: https://gitcode.com/gh_mirrors/cl/CLIP-ES
1. 项目目录结构及介绍
CLIP-ES/
├── clip/
│ ├── clip_text.py
│ ├── eval_cam.py
│ ├── eval_cam_with_crf.py
│ ├── generate_cams_coco14.py
│ ├── generate_cams_voc12.py
│ └── utils.py
├── coco14/
│ ├── train.txt
│ └── val.txt
├── voc12/
│ ├── train_aug.txt
│ └── train.txt
├── LICENSE
├── README.md
└── requirements.txt
目录结构说明:
clip/
:包含项目的主要代码文件,如文本处理、CAM生成、评估等。coco14/
和voc12/
:包含COCO2014和PASCAL VOC2012数据集的分割文件。LICENSE
:项目的开源许可证文件。README.md
:项目的介绍和使用说明。requirements.txt
:项目的依赖包列表。
2. 项目启动文件介绍
clip/generate_cams_voc12.py
- 功能:生成PASCAL VOC2012数据集的CAM(类激活映射)。
- 使用方法:
CUDA_VISIBLE_DEVICES=0 python generate_cams_voc12.py --img_root /your_home_dir/datasets/VOC2012/JPEGImages --split_file /voc12/train_aug.txt --model /your_home_dir/pretrained_models/clip/ViT-B-16.pt --num_workers 1 --cam_out_dir /output/voc12/cams
clip/generate_cams_coco14.py
- 功能:生成COCO2014数据集的CAM。
- 使用方法:
CUDA_VISIBLE_DEVICES=0 python generate_cams_coco14.py --img_root /your_home_dir/datasets/COCO2014/JPEGImages/train2014 --split_file /coco14/train.txt --model /your_home_dir/pretrained_models/clip/ViT-B-16.pt --num_workers 1 --cam_out_dir /output/coco14/cams
3. 项目的配置文件介绍
requirements.txt
- 内容:列出了项目运行所需的Python包及其版本。
- 示例:
torch==1.7.1+cu101 torchvision==0.8.2+cu101 opencv-python ftfy regex tqdm ttach tensorboard lxml cython
README.md
- 内容:项目的介绍、安装步骤、使用说明等。
- 示例:
# CLIP-ES CLIP is Also an Efficient Segmenter: A Text-Driven Approach for Weakly Supervised Semantic Segmentation (CVPR 2023) ## Requirements # create conda env conda create -n clip-es python=3.9 conda activate clip-es # install packages pip install -r requirements.txt
通过以上步骤,您可以顺利启动和配置CLIP-ES项目,并开始使用其功能。
CLIP-ES 项目地址: https://gitcode.com/gh_mirrors/cl/CLIP-ES
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考