LazyLLM项目实战:构建智能写作机器人全流程解析
前言
在自然语言处理领域,长文本生成一直是个具有挑战性的任务。本文将基于LazyLLM框架,手把手教你构建一个智能写作机器人系统。该系统采用模块化设计思想,通过双机器人协作机制实现高质量长文本生成,特别适合技术文档、小说创作等场景。
核心架构设计
双机器人协作机制
系统采用主从式架构设计:
- 大纲机器人:负责解析用户输入,生成结构化大纲(包含标题层级和章节描述)
- 内容机器人:根据大纲中的章节描述,扩展生成详细内容
关键技术组件
- JsonFormatter:处理模型输出的JSON格式数据
- Warp控制流:实现多输入并行处理
- bind参数绑定:实现跨模块数据传递
- Pipeline工作流:串联整个处理流程
实现细节详解
提示词工程
大纲生成提示词设计
toc_prompt = """
作为智能助手,你需要将用户输入转换为嵌套字典列表。每个字典包含:
- title:Markdown格式的标题(体现层级)
- describe:该章节的写作指导说明
输出示例:
[
{
"title": "# 一级标题",
"describe": "本节需要描述..."
}
]
用户输入:
"""
内容生成提示词模板
writer_prompt = {
"system": "根据给定标题和描述扩展写作内容",
"user": '{"title": "{title}", "describe": "{describe}"}'
}
模型配置
大纲生成模块
outline_writer = (lazyllm.TrainableModule('internlm2-chat-7b')
.formatter(JsonFormatter())
.prompt(toc_prompt))
关键点:
- 使用JsonFormatter自动解析JSON输出
- 指定提示词模板控制输出格式
内容生成模块
story_generater = warp(outline_writer.share(prompt=writer_prompt).formatter()
技术亮点:
share()
方法实现模型复用warp()
控制流处理并发请求
工作流组装
with pipeline() as ppl:
# 大纲生成
ppl.outline_writer = outline_writer
# 内容生成(并行处理)
ppl.story_generater = warp(...)
# 结果合成
ppl.synthesizer = (lambda *storys, outlines: "\n".join(
[f"{o['title']}\n{s}" for s, o in zip(storys, outlines)]
) | bind(outlines=ppl.output('outline_writer'))
关键技术创新:
bind()
实现跨模块参数传递- 匿名函数处理多章节合并
- 管道式编程提升可读性
部署与优化建议
服务化部署
lazyllm.WebModule(ppl, port=23466).start().wait()
性能优化方向
- 增加缓存机制避免重复生成
- 实现断点续写功能
- 添加风格控制参数
- 支持多文档格式输出
总结
通过本实战项目,我们完整实现了:
- 基于LazyLLM的模块化AI应用开发
- 复杂控制流的灵活运用
- 生产级文本生成系统的构建
这种架构设计不仅适用于写作场景,也可扩展至代码生成、报告撰写等领域,体现了LazyLLM框架在复杂AI应用开发中的强大灵活性。
提示:实际部署时建议添加输入校验和内容过滤模块,确保生成内容的安全性。对于商业场景,可考虑接入领域知识库提升内容专业性。
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考