Blind Image Decomposition (BID) 项目启动与配置教程
1. 项目的目录结构及介绍
Blind Image Decomposition (BID) 项目是一个用于图像分解的开源项目,其目录结构如下:
BID/
├── data/ # 存放数据集
├── datasets/ # 存放不同任务的数据集
├── experiments/ # 存放实验配置和结果
├── imgs/ # 存放图像样本
├── metrics/ # 存放评价标准相关代码
├── models/ # 存放模型定义和训练代码
├── options/ # 存放配置文件
├── raindrop/ # 与雨滴效果相关的代码
├── test.py # 测试单个案例的启动文件
├── test2.py # 测试所有案例的启动文件
├── train.py # 训练模型的启动文件
├── train_fid.py # 训练模型并计算FID的启动文件
├── environment.yml # Conda环境配置文件
├── LICENSE # 项目许可证
├── README.md # 项目说明文件
├── requirements.txt # Python依赖包列表
data/
:用于存放原始数据。datasets/
:包含不同任务所需的数据集。experiments/
:包含实验的配置文件和实验结果。imgs/
:存放用于演示的图像样本。metrics/
:包含各种图像质量评价指标的实现代码。models/
:包含模型定义、训练和测试的相关代码。options/
:包含项目的配置文件。raindrop/
:与雨滴效果相关的代码和资源。train.py
、train_fid.py
、test.py
、test2.py
:分别是训练和测试的启动脚本。
2. 项目的启动文件介绍
train.py
train.py
是用于启动模型训练的脚本。以下是一些基本的命令行参数示例,用于指定数据集路径、模型名称、模型类型和数据集模式:
python train.py --dataroot ./datasets/image_decom --name biden2 --model biden2 --dataset_mode unaligned2
test.py
test.py
用于测试单个案例。以下是一个使用示例:
python test.py --dataroot ./datasets/image_decom --name biden3 --model biden3 --dataset_mode unaligned3 --test_input A
test2.py
test2.py
用于测试所有案例。以下是一个使用示例:
python test2.py --dataroot ./datasets/image_decom --name biden3 --model biden3 --dataset_mode unaligned3
3. 项目的配置文件介绍
项目的配置文件主要位于 options/
目录下,这些文件以 .yaml
或 .py
为后缀。配置文件定义了模型的参数、数据加载的参数、训练参数等。
例如,一个配置文件可能如下所示:
# options/biden2.yaml
dataroot: ./datasets/image_decom
name: biden2
model: biden2
dataset_mode: unaligned2
这个配置文件定义了数据集的根目录、模型名称、模型类型和数据集模式。这些参数在训练和测试时会被相应地读取和使用。
在开始训练或测试之前,确保根据具体需求修改配置文件中的参数。
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考