Ray项目监控与调试:CLI与SDK使用指南

Ray项目监控与调试:CLI与SDK使用指南

概述

Ray作为分布式计算框架,提供了强大的监控和调试能力。本文将详细介绍如何通过命令行界面(CLI)和软件开发工具包(SDK)来监控Ray集群状态、资源使用情况以及调试应用程序。

基础监控:ray status命令

ray status是最基础的监控命令,运行在头节点上可查看集群整体状态:

$ ray status

输出包含两大关键信息:

  1. 节点状态

    • 健康节点列表
    • 待启动节点
    • 近期故障节点
  2. 资源使用情况

    • CPU使用率
    • 内存使用量
    • 对象存储使用量
    • 资源需求情况

使用-v参数可获取更详细的节点信息,特别有助于排查节点无法自动缩容的问题。

高级监控:Ray State API

Ray State API提供了更细粒度的集群状态监控能力,分为CLI和Python SDK两种形式。

核心概念

State API围绕以下几个核心概念构建:

  1. 资源类型:包括Actor、Task、Object、Job等
  2. 操作类型
    • summary:资源汇总视图
    • list:资源详细列表
    • get:单个资源详情
    • logs:日志访问

快速入门示例

假设我们有以下Ray脚本:

import ray
import time

ray.init(num_cpus=4)

@ray.remote
def task_running_300_seconds():
    time.sleep(300)

@ray.remote
class Actor:
    def __init__(self):
        pass

# 创建2个任务
tasks = [task_running_300_seconds.remote() for _ in range(2)]

# 创建2个Actor
actors = [Actor.remote() for _ in range(2)]
查看任务汇总信息
ray summary tasks

输出示例:

======== Tasks Summary: 2022-07-22 08:54:38.332537 ========
Stats:
------------------------------------
total_actor_scheduled: 2
total_actor_tasks: 0
total_tasks: 2

Table (group by func_name):
------------------------------------
    FUNC_OR_CLASS_NAME        STATE_COUNTS    TYPE
0   task_running_300_seconds  RUNNING: 2      NORMAL_TASK
1   Actor.__init__            FINISHED: 2     ACTOR_CREATION_TASK
查看Actor列表
ray list actors

输出示例:

======== List: 2022-07-23 21:29:39.323925 ========
Stats:
------------------------------
Total: 2

Table:
------------------------------
    ACTOR_ID                          CLASS_NAME    NAME      PID  STATE
0  31405554844820381c2f0f8501000000  Actor                 96956  ALIVE
1  f36758a9f8871a9ca993b1d201000000  Actor                 96955  ALIVE

详细使用指南

汇总视图使用

汇总视图是监控的起点,可快速发现异常:

  1. 汇总所有Actor

    ray summary actors
    
  2. 汇总所有任务

    ray summary tasks
    
  3. 汇总所有对象

    ray summary objects
    

列表视图使用

列表视图提供更详细的信息,支持多种过滤条件:

  1. 列出所有节点

    ray list nodes
    
  2. 列出特定状态的Actor

    ray list actors -f state=ALIVE
    
  3. 列出特定状态的任务

    ray list tasks -f state=RUNNING
    
  4. 使用组合过滤条件

    ray list tasks -f state=RUNNING -f name="task_running_300_seconds()"
    

获取单个实体详情

获取特定实体的详细信息:

  1. 获取任务详情

    ray get tasks <TASK_ID>
    
  2. 获取节点详情

    ray get nodes <NODE_ID>
    

日志访问

State API支持访问各种日志:

  1. 查看集群可用日志文件

    ray logs cluster
    
  2. 查看特定Actor日志

    ray logs actor --id <ACTOR_ID>
    

最佳实践

  1. 监控流程

    • 先使用summary获取概览
    • 发现异常后使用list缩小范围
    • 最后使用get深入分析特定问题
  2. 日志分析

    • 定期检查关键Actor的日志
    • 关注长时间运行的任务
    • 注意资源使用异常情况
  3. 调试技巧

    • 使用-v参数获取详细输出
    • 结合多个过滤条件精确定位问题
    • 对关键任务添加有意义的名称便于追踪

通过合理使用Ray提供的监控和调试工具,可以显著提高分布式应用的开发效率和运行稳定性。

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

姬虹俪Humble

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值