Pathway实时数据处理入门指南:构建你的第一个流式ETL应用

Pathway实时数据处理入门指南:构建你的第一个流式ETL应用

pathway Pathway is an open framework for high-throughput and low-latency real-time data processing. pathway 项目地址: https://gitcode.com/gh_mirrors/pa/pathway

什么是Pathway?

Pathway是一个开源的Python框架,专门用于构建实时数据流处理管道(ETL)。它能够高效处理来自Kafka、CSV文件等多种数据源的流式数据,并支持复杂的数据转换操作。与传统批处理系统不同,Pathway专为实时场景设计,能够即时响应数据变化并更新计算结果。

环境准备

在开始之前,请确保你的环境满足以下要求:

  1. Python 3.10或更高版本
  2. 安装Pathway框架:
pip install pathway

第一个示例:简单求和

让我们从一个简单的示例开始,了解Pathway的基本工作流程。这个示例将从CSV文件中读取正数数据,并计算它们的总和,最后将结果输出到JSON Lines文件。

import pathway as pw

# 定义数据模式
class InputSchema(pw.Schema):
    value: float

# 读取CSV文件
input_table = pw.io.csv.read(
    "./input_data/",
    schema=InputSchema,
    mode="streaming"
)

# 计算总和
sum_table = input_table.reduce(sum=pw.reducers.sum(pw.this.value))

# 输出结果到JSON文件
pw.io.jsonlines.write(sum_table, "output.json")

# 启动计算
pw.run()

这个简单的管道展示了Pathway的核心概念:定义数据源、进行转换操作、输出结果。Pathway会自动监控输入文件的变化,每当有新数据时都会重新计算总和。

进阶示例:实时阈值告警系统

让我们看一个更实际的例子:构建一个实时监控系统,当测量值超过预设阈值时发出警报。

系统架构

这个系统需要处理两个数据源:

  1. 实时测量数据(来自Kafka消息队列)
  2. 阈值配置(存储在CSV文件中)

系统需要将这两类数据关联起来,并筛选出超过阈值的测量值。

实现代码

import pathway as pw

# 定义测量数据模式
class MeasurementSchema(pw.Schema):
    name: str
    value: float

# 定义阈值数据模式
class ThresholdSchema(pw.Schema):
    name: str
    threshold: float

# Kafka连接配置
kafka_config = {
    "bootstrap.servers": "kafka-server:9092",
    "security.protocol": "sasl_ssl",
    "sasl.mechanism": "SCRAM-SHA-256",
    "group.id": "alert-group",
    "session.timeout.ms": "6000",
    "sasl.username": "user",
    "sasl.password": "password",
}

# 从Kafka读取实时测量数据
measurements = pw.io.kafka.read(
    kafka_config,
    topic="measurements",
    schema=MeasurementSchema,
    format="json",
    autocommit_duration_ms=1000
)

# 从CSV文件读取阈值配置
thresholds = pw.io.csv.read(
    "./thresholds/",
    schema=ThresholdSchema,
    mode="streaming"
)

# 关联测量数据和阈值
joined_data = measurements.join(
    thresholds,
    pw.left.name == pw.right.name
).select(
    *pw.left,
    pw.right.threshold
)

# 筛选超阈值数据
alerts = joined_data.filter(
    pw.this.value > pw.this.threshold
).select(
    pw.this.name,
    pw.this.value
)

# 将告警发送回Kafka
pw.io.kafka.write(
    alerts,
    kafka_config,
    topic_name="alerts",
    format="json"
)

# 启动计算
pw.run()

工作原理解析

  1. 数据源连接:系统同时连接了Kafka流和CSV文件两种数据源。Pathway会持续监控这两个源的变化。

  2. 数据关联:使用join操作将测量数据与对应的阈值配置关联起来,基于名称字段进行匹配。

  3. 条件过滤:通过filter操作筛选出值超过阈值的记录。

  4. 结果输出:将告警信息写回到Kafka的另一个主题中。

  5. 实时更新:当任一数据源有新数据到达时,整个管道会立即重新计算,确保结果始终是最新的。

输出格式说明

Pathway的输出包含了一些元数据字段:

  • time:表示数据变更发生的时间戳
  • diff:表示变更类型(1=新增,-1=删除)

例如,当阈值配置更新导致某个测量值从"不告警"变为"告警"状态时,输出会包含两条记录:一条删除旧状态,一条添加新状态。

Pathway核心概念

通过以上示例,我们可以总结出Pathway的几个关键特性:

  1. 流式优先:Pathway专为实时数据处理设计,能够即时响应数据变化。

  2. 声明式编程:使用Python代码声明数据处理逻辑,Pathway负责优化执行。

  3. 多数据源支持:可以同时连接Kafka、CSV、数据库等多种数据源。

  4. 自动更新:输入数据变化会自动触发管道重新计算,无需手动调度。

  5. 一致性保证:即使在分布式环境下,也能保证数据处理的一致性和正确性。

应用场景扩展

Pathway的强大功能使其适用于多种实时数据处理场景:

  1. 实时监控与告警:如本文示例所示,可以构建各种实时监控系统。

  2. 实时ETL:在数据仓库和数据分析场景中实现实时数据转换和加载。

  3. 实时特征计算:为机器学习模型提供实时特征数据。

  4. 实时推荐系统:基于用户实时行为更新推荐结果。

  5. 金融风控:实时检测异常交易行为。

学习路径建议

对于想要深入学习Pathway的开发者,建议按照以下路径:

  1. 掌握基本的数据源连接方式
  2. 熟悉常用的数据转换操作(过滤、关联、聚合等)
  3. 了解时间窗口处理
  4. 学习状态管理和复杂事件处理
  5. 探索分布式部署和性能优化

Pathway提供了一套完整而强大的工具集,可以帮助开发者轻松构建复杂的实时数据处理系统。通过本文的入门示例,你已经掌握了基本概念和简单应用,接下来可以尝试构建更复杂的实时数据处理管道。

pathway Pathway is an open framework for high-throughput and low-latency real-time data processing. pathway 项目地址: https://gitcode.com/gh_mirrors/pa/pathway

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

田慧娉

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值