PaddleX模型产线命令行工具使用详解
前言
PaddleX作为飞桨生态下的全流程开发工具,提供了便捷的命令行接口(CLI)来支持模型产线的快速推理。本文将详细介绍如何使用PaddleX命令行工具进行模型推理,帮助开发者高效完成预测任务。
环境准备
在使用PaddleX命令行工具前,请确保已完成以下准备工作:
- 已安装PaddleX及其依赖环境
- 已配置好Python环境(建议Python 3.6+)
- 如需使用GPU加速,需安装对应版本的CUDA和cuDNN
基础使用
快速体验图像分类
PaddleX提供了开箱即用的模型产线功能,以图像分类为例,只需一条命令即可完成推理:
paddlex --pipeline image_classification \
--input 示例图片路径 \
--device gpu:0 \
--save_path ./output/ \
--topk 5
参数说明:
--pipeline
: 指定模型产线名称或配置文件路径--input
: 待预测的图片路径,支持本地文件、目录或URL--device
: 指定计算设备,如"cpu"或"gpu:0"--save_path
: 预测结果保存路径--topk
: 输出置信度最高的前k个结果
输出结果解析
执行成功后,命令行会返回类似如下的JSON格式结果:
{
"input_path": "图片路径",
"class_ids": [296, 170, 356, 258, 248],
"scores": [0.62817, 0.03729, 0.03262, 0.03247, 0.03196],
"label_names": ["北极熊", "爱尔兰猎狼犬", "黄鼠狼", "萨摩耶犬", "爱斯基摩犬"]
}
高级配置
获取并修改产线配置文件
如需自定义模型产线配置,可先获取默认配置文件:
paddlex --get_pipeline_config image_classification
系统会提示输入保存路径,默认保存在当前目录下的configs文件夹中。
配置文件详解
获取的配置文件示例(image_classification.yaml):
pipeline_name: image_classification
SubModules:
ImageClassification:
module_name: image_classification
model_name: PP-LCNet_x0_5
model_dir: null
batch_size: 4
device: "gpu:0"
topk: 5
关键配置项说明:
model_name
: 使用的预训练模型名称model_dir
: 自定义模型路径,如使用自有模型可在此指定batch_size
: 推理时的批处理大小topk
: 输出前k个预测结果
使用自定义配置进行推理
修改配置文件后,可通过指定配置文件路径进行推理:
paddlex --pipeline configs/image_classification.yaml \
--input 示例图片路径 \
--save_path ./output/
实用技巧
-
批量推理技巧:当
--input
参数指定为目录时,会自动处理目录下所有支持的图片文件 -
设备选择建议:
- 小规模测试可使用CPU模式
- 生产环境推荐使用GPU加速
- 多卡环境下可指定不同GPU卡号
-
结果保存:
- 不指定
--save_path
时结果仅显示在终端 - 指定保存路径后会自动创建JSON格式的结果文件
- 不指定
-
性能优化:
- 适当增大
batch_size
可提升推理效率 - 对于实时性要求高的场景,可选用轻量级模型
- 适当增大
常见问题解答
Q: 如何查看支持的所有模型产线类型? A: 可通过paddlex --help
查看当前版本支持的产线类型
Q: 推理时出现内存不足错误怎么办? A: 可尝试减小batch_size
或使用更小的模型
Q: 如何加载自定义训练的模型? A: 在配置文件的model_dir
参数中指定模型路径即可
结语
通过PaddleX命令行工具,开发者可以快速实现从模型推理到结果输出的完整流程。本文介绍了基础使用方法和高级配置技巧,希望能帮助您更高效地使用PaddleX进行模型部署和预测任务。
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考