OpenPPL.PPL.NN x86后端自定义算子开发指南
概述
本文将详细介绍如何在OpenPPL.PPL.NN项目的x86后端中添加自定义算子。通过本教程,开发者可以掌握从参数定义到内核实现的全流程开发方法。我们将以LeakyReLU算子为例,演示完整的开发过程。
开发流程概览
在x86后端添加自定义算子主要分为以下四个步骤:
- 算子参数定义与解析(可选):定义算子参数结构体并实现解析函数
- 框架层算子上下文实现:实现数据类型推断、形状推断、数据格式选择等功能
- 内核执行调度:实现内核调度接口
- 内核计算实现:编写具体的计算内核
1. 算子参数定义与解析
1.1 参数结构体定义
对于需要参数的算子,首先需要定义参数结构体。以LeakyReLU为例:
struct LeakyReLUParam {
float alpha; // LeakyReLU仅需要一个alpha参数
bool operator==(const LeakyReLUParam& p) const {
return this->alpha == p.alpha;
}
};
结构体中需要:
- 包含算子所需的所有参数
- 重载==运算符,用于图优化时的参数比较
1.2 参数解析函数实现
参数解析函数负责从模型文件中读取并解析算子参数:
ppl::common::RetCode ParseLeakyReLUParam(const ::onnx::NodeProto& pb_node, void* arg, ir::Node*, ir::GraphTopo*) {
auto param = static_cast<ppl::common::LeakyReLUParam*>(arg);
param->alpha = utils::GetNodeAttrByKey<float>(pb_node, "alpha", 0.01);
return ppl::common::RC_SUCCESS;
}
解析函数需要:
- 从ONNX节点中读取参数值
- 处理默认值情况
- 返回操作状态码
1.3 参数注册
最后需要将参数结构体和解析函数注册到系统中:
PPL_REGISTER_OP_WITH_PARAM("", "LeakyRelu", ppl::nn::common::LeakyReLUParam, ParseLeakyReLUParam);
2. 框架层算子上下文实现
2.1 算子上下文类定义
算子上下文类继承自X86OptKernel,需要实现以下关键功能:
class LeakyReluOp final : public X86OptKernel {
public:
// 必须实现的接口
ppl::common::RetCode Init(const OptKernelOptions& options) override;
KernelImpl* CreateKernelImpl() const override;
// 可选实现的接口
ppl::common::RetCode SelectFormat(...) override;
private:
std::shared_ptr<ppl::common::LeakyReLUParam> param_; // 参数指针
};
2.2 数据类型推断
注册数据类型推断函数,决定输出张量的数据类型:
infer_type_func_ = GenericInferType; // 使用预定义的通用推断函数
也可以自定义推断逻辑,满足特殊需求。
2.3 形状推断
注册形状推断函数,决定输出张量的形状:
infer_dims_func_ = [](InputOutputInfo* info) -> RetCode {
return oputils::ReshapeLeakyReLU(info, nullptr);
};
2.4 数据格式选择
实现SelectFormat函数选择最优的数据格式:
RetCode LeakyReluOp::SelectFormat(...) {
if (input_format == DATAFORMAT_N16CX) {
selected_input_formats->at(0) = DATAFORMAT_N16CX;
selected_output_formats->at(0) = DATAFORMAT_N16CX;
}
return RC_SUCCESS;
}
x86后端支持的主要数据格式:
- NDARRAY(传统NCHW格式)
- N16CX(通道分块格式,优化内存访问)
2.5 创建内核接口
实现CreateKernelImpl函数创建内核接口:
KernelImpl* LeakyReluOp::CreateKernelImpl() const {
return CreateKernelImplWithParam<LeakyReluKernel>(param_.get());
}
3. 内核执行调度
3.1 内核接口类定义
内核接口类继承自X86Kernel:
class LeakyReluKernel : public X86Kernel {
public:
void SetParam(const ppl::nn::common::LeakyReLUParam* p) { param_ = p; }
private:
ppl::common::RetCode DoExecute(KernelExecContext*) override;
const ppl::nn::common::LeakyReLUParam* param_ = nullptr;
};
3.2 DoExecute实现
DoExecute是内核执行的核心函数:
ppl::common::RetCode LeakyReluKernel::DoExecute(KernelExecContext* ctx) {
// 获取输入输出张量
auto x = ctx->GetInput<TensorImpl>(0);
auto y = ctx->GetOutput<TensorImpl>(0);
// 根据数据类型和ISA选择不同内核
if (data_type == ppl::common::DATATYPE_FLOAT32) {
if (MayUseISA(ppl::common::ISA_X86_AVX)) {
return kernel::x86::leaky_relu_fp32_avx(...);
} else if (MayUseISA(ppl::common::ISA_X86_SSE)) {
return kernel::x86::leaky_relu_fp32_sse(...);
}
}
return ppl::common::RC_UNSUPPORTED;
}
4. 内核计算实现
4.1 内核函数声明
建议按照以下规范命名内核函数:
<opname>_<data_format>_<specialization>_<data_type>_<isa_type>
例如:
ppl::common::RetCode leaky_relu_fp32_avx(...);
ppl::common::RetCode leaky_relu_fp32_sse(...);
4.2 内核优化技巧
在实现x86内核时,可以考虑以下优化方法:
- SIMD指令利用:根据支持的ISA级别(AVX/SSE等)使用相应指令集
- 循环展开:合理展开循环减少分支预测开销
- 数据预取:提前预取数据到缓存
- 内存对齐:确保数据访问对齐内存边界
- 并行化:对于大尺寸数据考虑多线程并行
总结
本文详细介绍了在OpenPPL.PPL.NN项目中为x86后端添加自定义算子的完整流程。通过参数定义、框架集成、调度实现和内核优化四个步骤,开发者可以实现高性能的定制算子。实际开发中,建议参考项目中的现有算子实现,并根据具体需求进行调整优化。
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考