Agent Lightning单元测试指南:确保训练算法可靠性

Agent Lightning单元测试指南:确保训练算法可靠性

【免费下载链接】agent-lightning The absolute trainer to light up AI agents. 【免费下载链接】agent-lightning 项目地址: https://gitcode.com/GitHub_Trending/ag/agent-lightning

单元测试是保障Agent Lightning训练算法可靠性的关键环节。通过系统化的测试策略,开发者可以验证核心功能正确性、捕获潜在缺陷并提升代码质量。本文将从测试框架概览、关键模块测试实践、测试工具链与自动化三个维度,提供全面的单元测试实施指南。

测试框架概览

Agent Lightning采用分层测试架构,覆盖从基础组件到复杂算法的全链路验证。测试代码集中在tests/目录,按功能模块划分为算法测试、执行引擎测试、存储系统测试等子模块。

核心测试类型

测试执行流程

单元测试通过模拟依赖和验证输出确保组件行为符合预期。以算法测试为例,典型流程包括:

  1. 初始化测试对象(如APO算法实例)
  2. 输入预设测试数据
  3. 执行目标方法
  4. 断言输出结果与预期一致

任务-跨度循环示意图

关键模块测试实践

算法模块测试

APO(Automatic Prompt Optimization)算法是Agent Lightning的核心功能,其测试重点包括梯度计算、提示优化和奖励反馈机制。

测试案例:文本梯度计算

# tests/algorithm/test_apo.py
@pytest.mark.asyncio
async def test_compute_textual_gradient_samples_batch(monkeypatch: pytest.MonkeyPatch) -> None:
    create_mock = AsyncMock(return_value=make_completion("critique"))
    client = make_openai_client(create_mock)
    apo = APOAny
    versioned_prompt = apo._create_versioned_prompt(PromptTemplate(template="prompt", engine="f-string"))
    rollouts = [RolloutResultForAPO(status="succeeded", final_reward=float(i), spans=[], messages=[]) for i in range(3)]
    
    sample_mock = Mock(return_value=rollouts[:2])
    monkeypatch.setattr(apo_module.random, "sample", sample_mock)
    
    result = await apo.compute_textual_gradient(versioned_prompt, rollouts)
    
    assert result == "critique"
    sample_mock.assert_called_once_with(rollouts, 2)
    create_mock.assert_awaited_once()

关键验证点

  • 梯度计算使用指定批次大小采样rollout
  • OpenAI API调用参数正确(模型名、温度等)
  • 返回值符合预期格式

执行引擎测试

执行引擎负责协调算法和Runner进程,测试重点包括进程管理、通信协议和错误处理。

测试案例:进程优雅关闭

# tests/execution/test_client_server.py
def test_shutdown_processes_phase1_cooperative() -> None:
    strat = ClientServerExecutionStrategy(
        role="runner",
        server_port=_free_port(),
        graceful_timeout=0.05,
        terminate_timeout=0.05,
    )
    ctx = get_context()
    p = ctx.Process(target=time.sleep, args=(0.01,), name="coop")
    p.start()
    try:
        strat._shutdown_processes([p], DummyEvt())
        assert not p.is_alive() and p.exitcode == 0
    finally:
        if p.is_alive():
            p.terminate()
            p.join()

关键验证点

  • 进程在优雅超时内正常退出
  • 资源正确释放
  • 异常情况下的错误传播

存储系统测试

存储系统负责管理任务队列、资源和执行轨迹,测试重点包括并发访问安全、数据一致性和持久化机制。

测试案例:并发资源更新

# tests/store/test_threading.py
def test_threaded_store_prevents_race_conditions_on_resource_updates() -> None:
    store = ThreadedLightningStore(InMemoryLightningStore())
    resources = NamedResources({"llm": LLM(endpoint="http://test", model="test-model")})
    
    async def invoke(idx: int) -> ResourcesUpdate:
        return await store.update_resources(f"res-{idx}", resources)
    
    loop = asyncio.get_event_loop()
    tasks = [loop.create_task(invoke(i)) for i in range(10)]
    loop.run_until_complete(asyncio.gather(*tasks))
    
    assert len(store._store.resources) == 10

测试工具链与自动化

测试框架与依赖

  • pytest:测试发现和执行
  • pytest-asyncio:异步测试支持
  • unittest.mock:依赖模拟
  • coverage:测试覆盖率分析

自动化测试集成

通过以下命令执行全量单元测试:

pytest tests/ --cov=agentlightning --cov-report=html

测试报告:生成的覆盖率报告显示各模块测试覆盖情况,帮助识别未测试代码路径。

持续集成

在CI流水线中配置单元测试步骤,确保代码提交前通过所有测试。典型GitHub Actions配置:

jobs:
  test:
    runs-on: ubuntu-latest
    steps:
      - uses: actions/checkout@v4
      - name: Set up Python
        uses: actions/setup-python@v5
        with:
          python-version: "3.10"
      - name: Install dependencies
        run: pip install -e .[test]
      - name: Run tests
        run: pytest tests/ --cov=agentlightning

测试最佳实践

测试数据管理

  • 使用小型、确定性数据集确保测试可重复
  • 敏感数据(如API密钥)使用环境变量注入
  • 测试数据与代码分离,存储在tests/assets目录

模拟外部依赖

  • 对网络请求(如OpenAI API)使用Mock对象
  • 对文件系统操作使用临时目录
  • 对时间相关操作使用可控时钟

测试覆盖率目标

核心模块测试覆盖率建议:

  • 算法模块:≥90%
  • 执行引擎:≥85%
  • 存储系统:≥80%
  • 工具函数:≥95%

SQL Agent验证奖励曲线

总结

单元测试是确保Agent Lightning训练算法可靠性的关键实践。通过系统化测试策略、覆盖核心模块的测试案例和自动化测试流程,可以有效预防回归错误,提升代码质量,并加速开发迭代。建议开发者在添加新功能时同步编写测试,在修改关键逻辑后执行全量测试,确保系统行为符合预期。

官方文档:docs/index.md 测试源码:tests/ 示例测试:examples/calc_x/tests/

【免费下载链接】agent-lightning The absolute trainer to light up AI agents. 【免费下载链接】agent-lightning 项目地址: https://gitcode.com/GitHub_Trending/ag/agent-lightning

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值