Agent Lightning单元测试指南:确保训练算法可靠性
单元测试是保障Agent Lightning训练算法可靠性的关键环节。通过系统化的测试策略,开发者可以验证核心功能正确性、捕获潜在缺陷并提升代码质量。本文将从测试框架概览、关键模块测试实践、测试工具链与自动化三个维度,提供全面的单元测试实施指南。
测试框架概览
Agent Lightning采用分层测试架构,覆盖从基础组件到复杂算法的全链路验证。测试代码集中在tests/目录,按功能模块划分为算法测试、执行引擎测试、存储系统测试等子模块。
核心测试类型
- 单元测试:验证独立函数/类的正确性,如tests/algorithm/test_apo.py中的APO算法核心逻辑测试。
- 集成测试:验证模块间交互,如tests/execution/test_client_server.py中的客户端-服务器通信测试。
- 性能测试:验证系统在负载下的稳定性,如tests/runner/test_agent_runner.py中的并发任务处理测试。
测试执行流程
单元测试通过模拟依赖和验证输出确保组件行为符合预期。以算法测试为例,典型流程包括:
- 初始化测试对象(如APO算法实例)
- 输入预设测试数据
- 执行目标方法
- 断言输出结果与预期一致
关键模块测试实践
算法模块测试
APO(Automatic Prompt Optimization)算法是Agent Lightning的核心功能,其测试重点包括梯度计算、提示优化和奖励反馈机制。
测试案例:文本梯度计算
# tests/algorithm/test_apo.py
@pytest.mark.asyncio
async def test_compute_textual_gradient_samples_batch(monkeypatch: pytest.MonkeyPatch) -> None:
create_mock = AsyncMock(return_value=make_completion("critique"))
client = make_openai_client(create_mock)
apo = APOAny
versioned_prompt = apo._create_versioned_prompt(PromptTemplate(template="prompt", engine="f-string"))
rollouts = [RolloutResultForAPO(status="succeeded", final_reward=float(i), spans=[], messages=[]) for i in range(3)]
sample_mock = Mock(return_value=rollouts[:2])
monkeypatch.setattr(apo_module.random, "sample", sample_mock)
result = await apo.compute_textual_gradient(versioned_prompt, rollouts)
assert result == "critique"
sample_mock.assert_called_once_with(rollouts, 2)
create_mock.assert_awaited_once()
关键验证点:
- 梯度计算使用指定批次大小采样rollout
- OpenAI API调用参数正确(模型名、温度等)
- 返回值符合预期格式
执行引擎测试
执行引擎负责协调算法和Runner进程,测试重点包括进程管理、通信协议和错误处理。
测试案例:进程优雅关闭
# tests/execution/test_client_server.py
def test_shutdown_processes_phase1_cooperative() -> None:
strat = ClientServerExecutionStrategy(
role="runner",
server_port=_free_port(),
graceful_timeout=0.05,
terminate_timeout=0.05,
)
ctx = get_context()
p = ctx.Process(target=time.sleep, args=(0.01,), name="coop")
p.start()
try:
strat._shutdown_processes([p], DummyEvt())
assert not p.is_alive() and p.exitcode == 0
finally:
if p.is_alive():
p.terminate()
p.join()
关键验证点:
- 进程在优雅超时内正常退出
- 资源正确释放
- 异常情况下的错误传播
存储系统测试
存储系统负责管理任务队列、资源和执行轨迹,测试重点包括并发访问安全、数据一致性和持久化机制。
测试案例:并发资源更新
# tests/store/test_threading.py
def test_threaded_store_prevents_race_conditions_on_resource_updates() -> None:
store = ThreadedLightningStore(InMemoryLightningStore())
resources = NamedResources({"llm": LLM(endpoint="http://test", model="test-model")})
async def invoke(idx: int) -> ResourcesUpdate:
return await store.update_resources(f"res-{idx}", resources)
loop = asyncio.get_event_loop()
tasks = [loop.create_task(invoke(i)) for i in range(10)]
loop.run_until_complete(asyncio.gather(*tasks))
assert len(store._store.resources) == 10
测试工具链与自动化
测试框架与依赖
- pytest:测试发现和执行
- pytest-asyncio:异步测试支持
- unittest.mock:依赖模拟
- coverage:测试覆盖率分析
自动化测试集成
通过以下命令执行全量单元测试:
pytest tests/ --cov=agentlightning --cov-report=html
测试报告:生成的覆盖率报告显示各模块测试覆盖情况,帮助识别未测试代码路径。
持续集成
在CI流水线中配置单元测试步骤,确保代码提交前通过所有测试。典型GitHub Actions配置:
jobs:
test:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v4
- name: Set up Python
uses: actions/setup-python@v5
with:
python-version: "3.10"
- name: Install dependencies
run: pip install -e .[test]
- name: Run tests
run: pytest tests/ --cov=agentlightning
测试最佳实践
测试数据管理
- 使用小型、确定性数据集确保测试可重复
- 敏感数据(如API密钥)使用环境变量注入
- 测试数据与代码分离,存储在tests/assets目录
模拟外部依赖
- 对网络请求(如OpenAI API)使用Mock对象
- 对文件系统操作使用临时目录
- 对时间相关操作使用可控时钟
测试覆盖率目标
核心模块测试覆盖率建议:
- 算法模块:≥90%
- 执行引擎:≥85%
- 存储系统:≥80%
- 工具函数:≥95%
总结
单元测试是确保Agent Lightning训练算法可靠性的关键实践。通过系统化测试策略、覆盖核心模块的测试案例和自动化测试流程,可以有效预防回归错误,提升代码质量,并加速开发迭代。建议开发者在添加新功能时同步编写测试,在修改关键逻辑后执行全量测试,确保系统行为符合预期。
官方文档:docs/index.md 测试源码:tests/ 示例测试:examples/calc_x/tests/
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考




