tslearn中的动态时间规整(DTW)算法详解

tslearn中的动态时间规整(DTW)算法详解

什么是动态时间规整(DTW)

动态时间规整(Dynamic Time Warping, DTW)是一种用于衡量时间序列相似度的经典算法。它能够有效地解决时间序列在时间轴上存在非线性变形的问题,是时间序列分析中非常重要的工具。

DTW的核心思想

DTW通过寻找两个时间序列之间的最优对齐路径来比较它们的相似性。与简单的欧氏距离不同,DTW允许时间序列在时间轴上进行非线性拉伸或压缩,从而更好地捕捉相似模式。

数学定义

给定两个时间序列:

  • x = (x₀, ..., xₙ₋₁) 长度为n
  • y = (y₀, ..., yₘ₋₁) 长度为m

其中每个元素xᵢ和yⱼ都是d维向量。DTW通过解决以下优化问题来找到最佳对齐:

DTW(x, y) = minₚ√(∑(i,j)∈p d(xᵢ, yⱼ)²)

其中p是对齐路径,需要满足:

  1. 路径从(0,0)开始,到(n-1,m-1)结束
  2. 路径只能向右、向下或向右下移动

tslearn中的DTW实现

在tslearn中,我们可以方便地计算DTW距离:

from tslearn.metrics import dtw, dtw_path

# 计算DTW距离
dtw_score = dtw(x, y)

# 获取最优路径和距离
optimal_path, dtw_score = dtw_path(x, y)

DTW的算法实现

DTW通常使用动态规划算法实现,时间复杂度为O(mn)。以下是算法的伪代码:

def dtw(x, y):
    # 初始化代价矩阵
    C = [[inf for _ in range(m+1)] for _ in range(n+1)]
    C[0][0] = 0
    
    # 填充代价矩阵
    for i in range(1, n+1):
        for j in range(1, m+1):
            cost = distance(x[i-1], y[j-1])**2
            C[i][j] = cost + min(C[i-1][j], C[i][j-1], C[i-1][j-1])
    
    return sqrt(C[n][m])

自定义距离度量

tslearn允许使用自定义的距离度量:

from tslearn.metrics import dtw_path_from_metric

path, cost = dtw_path_from_metric(x, y, metric=custom_metric)

DTW的约束条件

为了限制路径的自由度,可以添加约束条件:

Sakoe-Chiba带约束

限制路径偏离对角线的最大距离:

cost = dtw(x, y, global_constraint="sakoe_chiba", sakoe_chiba_radius=3)

Itakura平行四边形约束

限制路径的最大斜率:

cost = dtw(x, y, global_constraint="itakura", itakura_max_slope=2.0)

DTW重心计算

使用DBA(DTW Barycenter Averaging)算法计算一组时间序列的DTW重心:

from tslearn.barycenters import dtw_barycenter_averaging

barycenter = dtw_barycenter_averaging(dataset)

Soft-DTW

为了解决DTW不可微的问题,提出了Soft-DTW:

from tslearn.metrics import soft_dtw

soft_score = soft_dtw(x, y, gamma=0.1)

Soft-DTW使用平滑的最小操作,使得距离函数可微,便于优化。

应用场景

DTW及其变体广泛应用于:

  • 语音识别
  • 手势识别
  • 心电图分析
  • 时间序列聚类
  • 异常检测

总结

tslearn提供了完整的DTW实现及其多种变体,包括约束DTW、Soft-DTW等,为时间序列分析提供了强大的工具。通过合理选择参数和约束条件,可以适应各种实际应用场景的需求。

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

廉娴鹃Everett

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值