基于dickreuter/Poker项目的扑克牌识别神经网络训练教程

基于dickreuter/Poker项目的扑克牌识别神经网络训练教程

项目概述

dickreuter/Poker项目是一个专注于扑克牌识别和分类的计算机视觉项目,它使用深度学习技术来识别扑克牌。本教程将详细介绍如何使用该项目中的神经网络模型进行扑克牌识别训练。

环境准备

首先需要设置必要的目录结构和导入相关库:

import logging
log = logging.getLogger(__name__)

# 定义数据集目录
SCRAPER_DIR = 'pics'
TRAIN_FOLDER = 'pics/train_cards'  # 训练集目录
VALIDATE_FOLDER = 'pics/validate_cards'  # 验证集目录
TEST_FOLDER = 'pics/test_cards'  # 测试集目录

神经网络模型导入

项目使用自定义的CardNeuralNetwork类来处理扑克牌识别:

import sys
import os

# 添加项目路径
sys.path.insert(0, os.path.abspath('..'))
from poker.scraper.table_scraper_nn import CardNeuralNetwork

数据准备与模型训练

1. 数据增强

在训练前,项目会先创建增强后的图像数据,这有助于提高模型的泛化能力:

table_name = "test"
log.info(f"Start training for {table_name}")

n = CardNeuralNetwork()
log.info(f"Creating augmented images in {TRAIN_FOLDER}")
n.create_augmented_images(table_name)

2. 模型训练

训练过程显示模型能够有效学习扑克牌特征:

n.train_neural_network()

训练输出示例:

Epoch 1/50
199/199 [==============================] - 20s 96ms/step - loss: 3.1090 - accuracy: 0.1287 - val_loss: 2.7084 - val_accuracy: 0.2593
Epoch 2/50
199/199 [==============================] - 18s 91ms/step - loss: 1.4316 - accuracy: 0.5396 - val_loss: 1.3452 - val_accuracy: 0.6046
...
Epoch 25/50
199/199 [==============================] - 19s 95ms/step - loss: 0.0487 - accuracy: 0.9874 - val_loss: 0.1245 - val_accuracy: 0.9708

3. 模型评估

最终模型在验证集上达到了很高的准确率:

Validation loss: 0.12174148112535477
Validation accuracy: 0.9701021909713745

模型架构分析

该神经网络采用了经典的卷积神经网络结构:

  1. 卷积层:多组卷积层用于提取图像特征
  2. 池化层:最大池化减少参数数量
  3. Dropout层:防止过拟合
  4. 全连接层:最终分类

模型总参数达到6,444,660个,具有强大的特征提取能力。

模型保存与分享

训练完成后,可以将模型推送到模型仓库:

from huggingface_hub import push_to_hub_keras

token = ''  # 需要填写有效的token
push_to_hub_keras(n.model, 
    "dickreuter/poker-card-classification", token=token,
    tags = ["poker-card-classification", "pokerbot"]
)

训练技巧与注意事项

  1. 数据增强:项目自动创建增强图像,提高模型鲁棒性
  2. 早停机制:当验证集性能不再提升时自动停止训练
  3. 硬件利用:代码会自动检测并利用可用GPU资源
  4. 类别平衡:确保52种扑克牌类别都有足够样本

实际应用场景

训练好的扑克牌识别模型可以应用于:

  • 在线扑克娱乐中的自动牌面识别
  • 扑克学习软件中的实时分析
  • 娱乐场所监控系统中的异常行为检测

总结

通过本教程,我们了解了dickreuter/Poker项目中扑克牌识别神经网络的完整训练流程。从数据准备、模型训练到最终部署,该项目展示了一个完整的计算机视觉应用开发过程。最终模型在扑克牌识别任务上达到了97%的验证准确率,表现优异。

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

段钰忻

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值