Pydantic AI 项目使用教程

Pydantic AI 项目使用教程

1. 目录结构及介绍

Pydantic AI 的目录结构如下:

  • .github/:包含 GitHub 工作流的配置文件。
  • docs-site/:存放项目文档的静态网站文件。
  • docs/:项目文档的源文件,使用 Markdown 格式编写。
  • examples/:包含一些使用 Pydantic AI 的示例代码。
  • mcp-run-python/:可能与项目运行相关的脚本或模块。
  • pydantic_ai_slim/:可能是 Pydantic AI 的精简版本或某个特定分支。
  • pydantic_graph/:包含与 Pydantic 图相关的代码。
  • tests/:存放项目的单元测试代码。
  • .gitignore:指定 Git 忽略的文件和目录。
  • .pre-commit-config.yaml:预提交钩子配置文件,用于自动化代码风格检查等。
  • .python-version:指定项目运行的 Python 版本。
  • LICENSE:项目许可证文件。
  • Makefile:用于构建和部署项目的 Makefile 文件。
  • README.md:项目说明文件。
  • mkdocs.insiders.yml:mkdocs 的内部配置文件。
  • mkdocs.yml:mkdocs 的配置文件,用于构建文档网站。
  • pyproject.toml:Python 项目配置文件。
  • uprev.py:可能是用于版本升级的脚本。
  • uv.lock:可能与项目运行环境相关的锁文件。

2. 项目的启动文件介绍

项目的启动文件通常在 examples/ 目录中可以找到。例如,hello_world.py 可能是一个简单的启动文件,用于演示如何创建和使用 Pydantic AI 的基础功能。

from pydantic_ai import Agent

# 创建一个简单的代理,包括要使用的模型
agent = Agent(
    'google-gla:gemini-1.5-flash',
    system_prompt='Be concise, reply with one sentence.'
)

# 同步运行代理,进行与 LLM 的对话
result = agent.run_sync('Where does "hello world" come from?')
print(result.data)

以上代码展示了如何定义一个代理,并使用它来与一个大型语言模型进行交互。

3. 项目的配置文件介绍

项目的配置文件通常用于定义项目的运行参数和环境。在 Pydantic AI 项目中,配置文件可能以 .toml.yaml 格式存在,例如 pyproject.toml

pyproject.toml 文件可能包含以下内容:

[build-system]
requires = ["setuptools", "wheel"]
build-backend = "setuptools.build_meta"

[tool.setuptools]
packages = find:
py_modules = pydantic_ai

这个配置文件指定了构建系统所需依赖,以及如何查找和打包项目模块。

请根据实际项目中的文件和目录结构调整上述内容,并根据具体情况进行适当修改。

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

钟胡微Egan

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值