Pydantic AI 项目使用教程
1. 目录结构及介绍
Pydantic AI 的目录结构如下:
.github/
:包含 GitHub 工作流的配置文件。docs-site/
:存放项目文档的静态网站文件。docs/
:项目文档的源文件,使用 Markdown 格式编写。examples/
:包含一些使用 Pydantic AI 的示例代码。mcp-run-python/
:可能与项目运行相关的脚本或模块。pydantic_ai_slim/
:可能是 Pydantic AI 的精简版本或某个特定分支。pydantic_graph/
:包含与 Pydantic 图相关的代码。tests/
:存放项目的单元测试代码。.gitignore
:指定 Git 忽略的文件和目录。.pre-commit-config.yaml
:预提交钩子配置文件,用于自动化代码风格检查等。.python-version
:指定项目运行的 Python 版本。LICENSE
:项目许可证文件。Makefile
:用于构建和部署项目的 Makefile 文件。README.md
:项目说明文件。mkdocs.insiders.yml
:mkdocs 的内部配置文件。mkdocs.yml
:mkdocs 的配置文件,用于构建文档网站。pyproject.toml
:Python 项目配置文件。uprev.py
:可能是用于版本升级的脚本。uv.lock
:可能与项目运行环境相关的锁文件。
2. 项目的启动文件介绍
项目的启动文件通常在 examples/
目录中可以找到。例如,hello_world.py
可能是一个简单的启动文件,用于演示如何创建和使用 Pydantic AI 的基础功能。
from pydantic_ai import Agent
# 创建一个简单的代理,包括要使用的模型
agent = Agent(
'google-gla:gemini-1.5-flash',
system_prompt='Be concise, reply with one sentence.'
)
# 同步运行代理,进行与 LLM 的对话
result = agent.run_sync('Where does "hello world" come from?')
print(result.data)
以上代码展示了如何定义一个代理,并使用它来与一个大型语言模型进行交互。
3. 项目的配置文件介绍
项目的配置文件通常用于定义项目的运行参数和环境。在 Pydantic AI 项目中,配置文件可能以 .toml
或 .yaml
格式存在,例如 pyproject.toml
。
pyproject.toml
文件可能包含以下内容:
[build-system]
requires = ["setuptools", "wheel"]
build-backend = "setuptools.build_meta"
[tool.setuptools]
packages = find:
py_modules = pydantic_ai
这个配置文件指定了构建系统所需依赖,以及如何查找和打包项目模块。
请根据实际项目中的文件和目录结构调整上述内容,并根据具体情况进行适当修改。
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考