UniSRec 开源项目使用教程
1. 项目的目录结构及介绍
UniSRec 项目的目录结构如下:
UniSRec/
├── README.md
├── requirements.txt
├── data/
├── pretrain/
├── downstream/
├── saved/
├── scripts/
├── props/
├── finetune.py
├── run_baseline.py
└── ...
目录结构介绍
README.md
: 项目的基本介绍和使用说明。requirements.txt
: 项目依赖的 Python 包列表。data/
: 存放数据集的目录。pretrain/
: 预训练阶段的代码和脚本。downstream/
: 下游任务的代码和脚本。saved/
: 保存预训练模型和微调模型的目录。scripts/
: 包含一些辅助脚本。props/
: 配置文件目录。finetune.py
: 微调模型的脚本。run_baseline.py
: 运行基准模型的脚本。
2. 项目的启动文件介绍
finetune.py
finetune.py
是用于微调预训练模型的主要启动文件。可以通过以下命令启动微调过程:
python finetune.py -d Scientific -p saved/UniSRec-FHCKM-300.pth
run_baseline.py
run_baseline.py
是用于运行基准模型的启动文件。可以通过以下命令启动基准模型:
python run_baseline.py -m SASRec -d Scientific --config_files=props/finetune.yaml --hidden_size=300
3. 项目的配置文件介绍
props/
目录
props/
目录包含项目的配置文件,例如 finetune.yaml
。配置文件中定义了模型的各种参数,如隐藏层大小、学习率等。
配置文件示例
# finetune.yaml
hidden_size: 300
learning_rate: 0.001
batch_size: 64
...
通过修改配置文件中的参数,可以调整模型的训练和评估行为。
以上是 UniSRec 开源项目的使用教程,涵盖了项目的目录结构、启动文件和配置文件的介绍。希望这些信息能帮助你更好地理解和使用该项目。
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考