Data Engineering with Google Cloud Platform 项目教程

Data Engineering with Google Cloud Platform 项目教程

1. 项目介绍

项目概述

Data Engineering with Google Cloud Platform 是一个由 Packt Publishing 出版的书籍配套代码库,旨在帮助数据工程师在 Google Cloud Platform (GCP) 上构建和操作可扩展的数据分析系统。该项目提供了丰富的代码示例和实践指南,涵盖了从数据存储、处理、工作流编排到数据可视化的全流程。

主要功能

  • 数据加载与处理:使用 BigQuery 加载数据并进行处理。
  • 工作流编排:使用 Cloud Composer 和 Airflow 进行数据管道编排。
  • 数据湖构建:在 Dataproc 上创建 Hadoop 数据湖。
  • 消息系统:利用 Pub/Sub 进行消息传递和事件驱动系统。
  • 流数据处理:使用 Dataflow 进行流数据的 ETL 处理。
  • 数据可视化:通过 Data Studio 进行数据可视化。

2. 项目快速启动

环境准备

  1. GCP 账户:确保你有一个 GCP 账户和项目。如果没有,可以参考 GCP 快速入门指南 创建。
  2. Python 环境:项目代码主要使用 Python,建议安装 Python 3.7 或更高版本。

快速启动代码示例

以下是一个简单的代码示例,展示如何使用 BigQuery 加载数据并进行查询。

from google.cloud import bigquery

# 初始化 BigQuery 客户端
client = bigquery.Client()

# 定义查询
query = """
    SELECT name, SUM(number) as total_people
    FROM `bigquery-public-data.usa_names.usa_1910_2013`
    WHERE state = 'TX'
    GROUP BY name
    ORDER BY total_people DESC
    LIMIT 10
"""

# 执行查询
query_job = client.query(query)

# 获取结果
results = query_job.result()

# 打印结果
for row in results:
    print("{}: {}".format(row.name, row.total_people))

运行步骤

  1. 安装依赖:使用 pip 安装必要的 Python 包。
    pip install google-cloud-bigquery
    
  2. 设置环境变量:确保你的 GCP 凭据已正确设置。
    export GOOGLE_APPLICATION_CREDENTIALS="path/to/your/credentials.json"
    
  3. 运行代码:将上述代码保存为 query_bigquery.py 并运行。
    python query_bigquery.py
    

3. 应用案例和最佳实践

应用案例

  • 实时数据处理:使用 Dataflow 处理实时流数据,例如实时日志分析。
  • 数据湖构建:在 Dataproc 上构建 Hadoop 数据湖,用于存储和处理大规模数据集。
  • 数据管道编排:使用 Cloud Composer 和 Airflow 编排复杂的数据管道,确保数据处理的可靠性和可扩展性。

最佳实践

  • 成本优化:利用 GCP 的免费层和成本估算工具,合理规划资源使用。
  • 安全性:使用 GCP 的高级安全功能,如 IAM 和 VPC 服务边界,保护数据安全。
  • 监控与日志:使用 Cloud Monitoring 和 Cloud Logging 监控系统性能和日志,及时发现和解决问题。

4. 典型生态项目

相关项目

  • Data Engineering with Python:使用 Python 进行数据工程的书籍和代码库。
  • Data Engineering with AWS:在 AWS 平台上进行数据工程的书籍和代码库。

生态系统集成

  • BigQuery:GCP 上的大数据分析服务,支持 SQL 查询和大规模数据处理。
  • Cloud Composer:基于 Apache Airflow 的工作流编排服务,用于管理复杂的数据管道。
  • Dataflow:GCP 上的流数据处理服务,支持实时数据处理和 ETL 操作。

通过本教程,你可以快速上手 Data Engineering with Google Cloud Platform 项目,并了解如何在 GCP 上构建和操作可扩展的数据分析系统。

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

农优影

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值