ZenML项目云环境编排指南:从本地到云端MLOps实践

ZenML项目云环境编排指南:从本地到云端MLOps实践

zenml ZenML 🙏: Build portable, production-ready MLOps pipelines. https://zenml.io. zenml 项目地址: https://gitcode.com/gh_mirrors/ze/zenml

前言

在现代机器学习工程实践中,将MLOps流水线从本地迁移到云端是提升可扩展性和可靠性的关键一步。本文将详细介绍如何使用ZenML框架实现这一转变,帮助开发者构建完整的云端机器学习工作流。

核心概念解析

云编排基础组件

在构建云环境MLOps流水线时,需要理解两个核心组件:

  1. 编排器(Orchestrator):负责管理工作流的执行流程,决定任务如何以及在何处运行。在云环境中,编排器可以自动管理计算资源的分配和释放。

  2. 容器注册表(Container Registry):用于存储和管理Docker容器镜像的中央仓库。当流水线在云端运行时,所有代码和环境依赖都将被打包成容器镜像并推送到注册表中。

完整云技术栈

一个完整的ZenML云技术栈通常包含:

  • 远程存储(Artifact Store)
  • 云编排器
  • 容器注册表

这三个组件协同工作,确保整个MLOps流水线完全运行在云端环境中。

云编排工作流程详解

当使用ZenML在云端运行流水线时,系统会执行以下关键步骤:

  1. 客户端初始化:本地运行脚本触发流水线执行,ZenML解析流水线定义。

  2. 配置获取:客户端从ZenML服务器获取云技术栈配置信息。

  3. 镜像构建与推送

    • 根据技术栈配置构建Docker镜像
    • 镜像包含代码、依赖和环境配置
    • 将镜像推送到指定的容器注册表
  4. 资源调配:编排器在云端创建执行环境(如虚拟机或Kubernetes集群)。

  5. 镜像拉取与执行:云端环境从容器注册表拉取镜像并执行流水线步骤。

  6. 结果存储:执行过程中产生的所有工件(Artifacts)存储在远程存储中。

  7. 状态同步:执行状态和元数据实时同步回ZenML服务器。

主流云平台配置指南

AWS环境配置

  1. 安装必要集成:
zenml integration install aws skypilot_aws -y
  1. 配置服务连接器:
AWS_PROFILE=<AWS_PROFILE> zenml service-connector register cloud_connector --type aws --auto-configure
  1. 注册编排器:
zenml orchestrator register cloud_orchestrator -f vm_aws
zenml orchestrator connect cloud_orchestrator --connector cloud_connector
  1. 注册容器注册表:
zenml container-registry register cloud_container_registry -f aws --uri=<ACCOUNT_ID>.dkr.ecr.<REGION>.amazonaws.com

GCP环境配置

  1. 安装必要集成:
zenml integration install gcp skypilot_gcp -y
  1. 配置服务连接器:
zenml service-connector register cloud_connector --type gcp --auth-method service-account --service_account_json=@<PATH_TO_SERVICE_ACCOUNT_JSON>
  1. 注册编排器:
zenml orchestrator register cloud_orchestrator -f vm_gcp 
zenml orchestrator connect cloud_orchestrator --connect cloud_connector
  1. 注册容器注册表:
zenml container-registry register cloud_container_registry -f gcp --uri=gcr.io/<PROJECT_ID>

Azure环境配置

由于技术限制,Azure用户建议使用Kubernetes编排器:

  1. 安装必要集成:
zenml integration install azure kubernetes -y
  1. 配置服务连接器:
zenml service-connector register cloud_connector --type azure --auth-method service-principal --tenant_id=<TENANT_ID> --client_id=<CLIENT_ID>
  1. 注册Kubernetes编排器:
zenml orchestrator register cloud_orchestrator --flavor kubernetes
zenml orchestrator connect cloud_orchestrator --connect cloud_connector
  1. 注册容器注册表:
zenml container-registry register cloud_container_registry -f azure --uri=<REGISTRY_NAME>.azurecr.io

实践:在云端运行流水线

完成上述配置后,可以创建并激活云技术栈:

zenml stack register minimal_cloud_stack -o cloud_orchestrator -a cloud_artifact_store -c cloud_container_registry
zenml stack set minimal_cloud_stack

然后运行训练流水线:

python run.py --training-pipeline

执行时,ZenML会自动完成以下操作:

  1. 构建包含所有代码和依赖的Docker镜像
  2. 推送镜像到容器注册表
  3. 在云端创建执行环境
  4. 流式传输执行日志回本地

最佳实践与建议

  1. 权限管理:确保服务账号具有足够的权限执行所需操作。

  2. 镜像优化:合理设计Dockerfile以减少镜像大小和构建时间。

  3. 资源监控:定期检查云资源使用情况,避免不必要的费用。

  4. 环境隔离:为不同环境(开发、测试、生产)配置独立的技术栈。

  5. 日志管理:配置适当的日志级别和存储策略,便于问题排查。

通过ZenML的云编排功能,开发者可以轻松实现从本地开发到云端生产的无缝过渡,享受云计算带来的弹性扩展和可靠性优势。

zenml ZenML 🙏: Build portable, production-ready MLOps pipelines. https://zenml.io. zenml 项目地址: https://gitcode.com/gh_mirrors/ze/zenml

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

花谦战

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值