Super-mario-bros-PPO-pytorch 项目使用教程

Super-mario-bros-PPO-pytorch 项目使用教程

Super-mario-bros-PPO-pytorchProximal Policy Optimization (PPO) algorithm for Super Mario Bros项目地址:https://gitcode.com/gh_mirrors/su/Super-mario-bros-PPO-pytorch

1. 项目的目录结构及介绍

Super-mario-bros-PPO-pytorch/
├── Dockerfile
├── LICENSE
├── README.md
├── infer.py
├── train.py
├── actions.py
├── demo/
│   └── ...
├── output/
│   └── ...
├── src/
│   └── ...
└── trained_models/
    └── ...
  • Dockerfile: 用于构建Docker镜像的文件。
  • LICENSE: 项目的MIT许可证文件。
  • README.md: 项目的说明文档。
  • infer.py: 用于预测的脚本。
  • train.py: 用于训练模型的脚本。
  • actions.py: 定义游戏动作的脚本。
  • demo/: 存放演示文件的目录。
  • output/: 存放输出文件的目录。
  • src/: 存放源代码的目录。
  • trained_models/: 存放训练好的模型文件的目录。

2. 项目的启动文件介绍

train.py

train.py 是用于训练模型的主要脚本。可以通过以下命令启动训练:

python train.py --game=SuperMarioBros-Nes

infer.py

infer.py 是用于预测的脚本,使用训练时保存的最佳得分模型进行预测。可以通过以下命令启动预测:

python infer.py --game=SuperMarioBros-Nes

3. 项目的配置文件介绍

项目中没有显式的配置文件,但可以通过命令行参数进行配置。例如,在训练时可以通过 --game 参数指定游戏名称:

python train.py --game=SuperMarioBros-Nes

在预测时同样可以通过 --game 参数指定游戏名称:

python infer.py --game=SuperMarioBros-Nes

此外,actions.py 文件中定义了游戏可执行的动作,可以根据需要进行修改以适应不同的游戏。

Super-mario-bros-PPO-pytorchProximal Policy Optimization (PPO) algorithm for Super Mario Bros项目地址:https://gitcode.com/gh_mirrors/su/Super-mario-bros-PPO-pytorch

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

内容概要:本文档是《云计算服务存储资源管理合作协议书》,详细规定了服务提供方(甲方)和服务接受方(乙方)在云计算服务存储管理方面的权利、义务和责任。合同明确了甲方向乙方提供稳定、安全、可靠的云计算服务存储资源,以及相应的技术支持和服务,包括系统维护、故障排除、数据备份与恢复等。同时,甲方需对乙方数据保密并定期提供服务使用情况报告。乙方则需合理使用存储资源,确保数据合法合规,按时支付服务费用,并配合甲方进行系统维护。此外,合同还涉及支付方式、违约责任、争议解决机制等内容,确保双方合作顺利进行,实现资源共享,提高乙方业务效率。 适合人群:适用于云计算服务提供商和需要使用云计算存储资源的企业或机构。 使用场景及目标:①为企业或机构提供稳定的云计算存储服务,满足其业务需求;②规范双方在云计算服务存储管理中的权利和义务,确保合作顺畅;③保障数据安全,防止数据泄露、丢失或损坏;④建立合理的支付机制和违约处理机制,确保合同有效执行。 其他说明:合同还包括了详细的附件,如需求文档、设计方案、技术规格等,确保双方在具体操作层面有一致的理解和依据。合同签订后,双方需遵守相关法律法规,依法纳税,并在争议发生时优先通过友好协商解决。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

强耿习Margot

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值