深入理解线性回归与梯度下降算法:以ethen8181机器学习项目为例

深入理解线性回归与梯度下降算法:以ethen8181机器学习项目为例

machine-learning :earth_americas: machine learning tutorials (mainly in Python3) machine-learning 项目地址: https://gitcode.com/gh_mirrors/mach/machine-learning

引言

线性回归是机器学习中最基础且重要的算法之一,而梯度下降则是优化模型参数的经典方法。本文将基于ethen8181机器学习项目中的线性回归实现,深入浅出地讲解梯度下降在线性回归中的应用原理和实践技巧。

梯度下降基础

基本概念

梯度下降是一种迭代优化算法,用于寻找函数的最小值。其核心思想是:沿着函数梯度的反方向逐步调整参数,直到找到最优解。

数学表达式为: $$\text{重复直到收敛} { x:=x-\alpha\triangledown F(x) }$$

其中:

  • $\alpha$:学习率,控制步长大小
  • $\triangledown F(x)$:函数在x处的梯度(导数)

简单示例

考虑函数 $F(x) = 1.2\times(x-2)^2 + 3.2$,我们可以通过梯度下降找到其最小值:

# 定义函数及其导数
Formula <- function(x) 1.2 * (x-2)^2 + 3.2
Derivative <- function(x) 2 * 1.2 * (x-2) 

# 梯度下降实现
learning_rate <- 0.6
x <- 0.1  # 初始值

# 迭代过程
for(i in 1:10) {
  x <- x - learning_rate * Derivative(x)
  print(paste("迭代", i, ": x =", x, "F(x) =", Formula(x)))
}

这个简单示例展示了梯度下降如何逐步逼近最优解x=2的过程。

线性回归中的梯度下降

问题定义

给定房屋面积和卧室数量预测房价,这是一个典型的多元线性回归问题。模型表示为:

$$ h_{\theta}(x) = \theta_0 + \theta_1 x_{area} + \theta_2 x_{bedrooms} $$

成本函数

我们使用均方误差(MSE)作为成本函数:

$$ J(\theta) = \frac{1}{2m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)})^2 $$

其中m是样本数量,$\theta$是待优化的参数。

参数更新规则

对每个参数$\theta_j$的更新规则为:

$$ \theta_j := \theta_j - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_j^{(i)} $$

实现细节

数据预处理

特征缩放是梯度下降中的重要步骤,特别是当特征量纲差异大时:

# Z-score标准化
Normalize <- function(x) (x - mean(x)) / sd(x)

# 对房屋数据进行标准化
normed_housing <- apply(housing[, -3], 2, Normalize)

梯度下降实现

ethen8181项目中实现了完整的梯度下降算法:

# 梯度下降主函数
GradientDescent <- function(data, target, learning_rate, iteration, 
                           epsilon=0.001, normalize=TRUE, method="batch") {
  # 实现细节...
}

# 应用示例
result <- GradientDescent(data=housing, target="price", 
                         learning_rate=0.05, iteration=500)

与线性回归对比

将梯度下降结果与R内置的lm函数对比:

# 梯度下降结果
parameters_gd <- result$theta[nrow(result$theta), ]

# 线性回归结果
model_lm <- lm(price ~ area + bedrooms, data=normed_housing)
coefficients_lm <- coef(model_lm)

# 比较
data.frame(Gradient_Descent=parameters_gd, Linear_Regression=coefficients_lm)

关键参数与调优

学习率选择

学习率$\alpha$的选择至关重要:

  • 过大:可能导致震荡甚至发散
  • 过小:收敛速度慢

建议尝试不同值(如0.01, 0.03, 0.1, 0.3等)

迭代次数与停止条件

合理设置:

  • 最大迭代次数:防止无限循环
  • 收敛阈值:当参数变化小于$\epsilon$时停止

实际应用建议

  1. 特征工程:确保数据经过适当处理(缺失值、异常值等)
  2. 模型评估:使用训练集/测试集划分验证模型性能
  3. 正则化:考虑加入L1/L2正则化防止过拟合
  4. 学习曲线:绘制成本函数随迭代次数的变化,监控训练过程

总结

通过ethen8181项目的线性回归实现,我们深入理解了:

  1. 梯度下降的基本原理和实现方式
  2. 如何将梯度下降应用于线性回归问题
  3. 特征缩放的重要性
  4. 关键参数的调优方法

梯度下降作为优化算法的基石,掌握其原理和实现对于理解更复杂的机器学习模型至关重要。建议读者尝试调整不同参数,观察对模型性能的影响,以加深理解。

machine-learning :earth_americas: machine learning tutorials (mainly in Python3) machine-learning 项目地址: https://gitcode.com/gh_mirrors/mach/machine-learning

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

颜虹笛

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值