Control Toolbox: 开源机器人控制库
Control Toolbox 是一个高效的开源 C++ 库,专为机器人控制、估计、优化和运动规划而设计。该项目的目标是提供一个适用于广泛动态系统的建模和控制工具,特别是为机器人领域提供了额外的建模工具。
1. 项目基础介绍和主要编程语言
Control Toolbox 由瑞士联邦理工学院 (ETH Zurich) 的敏捷与灵巧机器人实验室 (Agile & Dexterous Robotics Lab) 开发,并使用 C++ 编程语言实现。C++ 的选择确保了代码的高效率和实时运行的能力,这对于在机器人或其他激活硬件上进行在线控制至关重要。
2. 项目的核心功能
- 系统和动力学建模:直观地建模由常微分方程或差分方程控制的系统。
- 轨迹优化和最优控制:支持经典单射击、iLQR/iLQG (迭代线性二次最优控制)、多射击 iLQR、高斯-牛顿多射击 (GNMS)、经典直接多射击 (DMS) 等算法。
- 模型预测控制 (MPC):为求解大规模最优控制问题提供了标准化接口,支持 IPOPT、SNOPT 和 HPIPM 等求解器。
- 机器人建模:提供与 RobCoGen 的直接接口,用于刚体动力学建模,并实现基本非线性规划逆运动学求解器。
- 自动微分:支持任意向量值函数(包括成本函数和约束)的一阶和二阶自动微分,以及刚体动力学导数代码的生成。
3. 项目最近更新的功能
最近更新的功能包括但不限于以下内容:
- 性能优化:对库的性能进行了进一步的优化,以更高效地解决大规模最优控制问题。
- 新算法支持:增加了对更多优化算法的支持,扩展了用户在轨迹优化和模型预测控制方面的选择。
- 文档和示例:更新了文档和示例,以帮助新用户更快地上手和使用 Control Toolbox。
- 错误修复和稳定性改进:对已知的问题进行了修复,并提高了库的整体稳定性和可靠性。
Control Toolbox 作为一个不断发展的开源项目,持续吸引着来自世界各地的贡献者,旨在为机器人控制领域提供一个高效、灵活且易于使用的工具箱。
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考