MLOps 实践:基于 TensorFlow 和 HuggingFace Transformers 的计算机视觉模型
1. 项目基础介绍
本项目是一个开源项目,旨在展示如何使用 TensorFlow 和 HuggingFace Transformers (🤗 Transformers) 构建计算机视觉模型的机器学习管道(MLOps)。项目利用 TensorFlow Extended (TFX) 生态系统,包含了 TensorFlow Data Validation (TFDV)、Transform (TFT)、Model Analysis (TFMA) 以及 TensorFlow Serving 等工具。项目使用的主要编程语言是 Python 和 Jupyter Notebook。
2. 项目核心功能
项目的核心功能是构建一个完整的机器学习管道,包括以下几个关键步骤:
- 基础组件:使用 ExampleGen、Trainer 和 Pusher 组件,实现从原始数据集到模型训练再到模型部署的流程。
- 中间步骤:添加 SchemaGen、StatisticsGen 和 Transform 组件,用于分析数据集结构、统计特征数据以及数据预处理。
- 高级功能:引入 Resolver 和 Evaluator 组件,以便导入现有制品(如之前训练的模型),并比较两个模型(一个是来自 Resolver 的,一个是当前管道运行的)的性能。
- 超参数调优:通过添加 Tuner 组件,运行一系列不同超参数组合的实验,选择最佳的超参数组合用于训练模型。
3. 项目最近更新的功能
项目最近更新的功能主要集中在以下几个方面:
- 增强的管道扩展:在第三步的基础上,增加了对更多组件的支持,使得管道功能更加完善。
- 🤗 Hub 集成:增加了自定义 TFX 组件,用于与 HuggingFace Hub 集成。具体来说,使用 HFModelPusher 将训练好的模型推送到 HuggingFace Model Hub,以及使用 HFSpacePusher 自动部署 Gradio 应用到 HuggingFace Space Hub。
通过这些更新,项目不仅提高了模型的训练和部署效率,还增加了与 HuggingFace 社区的互动,使得研究成果能够更广泛地共享和利用。
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考