MMHuman3D项目:如何为数据集添加转换器

MMHuman3D项目:如何为数据集添加转换器

mmhuman3d OpenMMLab 3D Human Parametric Model Toolbox and Benchmark mmhuman3d 项目地址: https://gitcode.com/gh_mirrors/mm/mmhuman3d

概述

在MMHuman3D项目中,所有数据集在训练或测试加载前都需要经过预处理(使用相应的转换器)并转换为统一的格式。本文将详细介绍如何为MMHuman3D添加一个新的数据集转换器,以支持新的数据集。

数据集转换器基础

在MMHuman3D中,数据集转换器主要负责将原始数据集转换为项目统一的格式。转换后的数据会以.npz文件格式存储,包含图像路径、边界框、2D/3D关键点等信息。

创建转换器脚本

1. 选择转换器基类

MMHuman3D提供了两种转换器基类供开发者继承:

  1. BaseConverter:适用于不需要区分训练/测试模式的数据集
  2. BaseModeConverter:适用于需要区分训练/测试模式的数据集

2. 实现转换器类

以LSP数据集为例,我们创建一个lsp.py文件:

from typing import List
from mmhuman3d.data.data_converters.builder import DATA_CONVERTERS
from mmhuman3d.data.data_converters.base_converter import BaseModeConverter
from mmhuman3d.core.conventions.keypoints_mapping import convert_kps
from mmhuman3d.utils import HumanData

@DATA_CONVERTERS.register_module()
class LspConverter(BaseModeConverter):
    """LSP数据集转换器
    
    参数:
        modes (list): 可接受模式列表,如['test', 'train']
    """
    ACCEPTED_MODES = ['test', 'train']

    def __init__(self, modes: List = []) -> None:
        super(LspConverter, self).__init__(modes)

    def convert_by_mode(self, dataset_path: str, out_path: str, mode: str) -> dict:
        """按模式转换数据集
        
        参数:
            dataset_path (str): 原始数据集路径
            out_path (str): 预处理数据输出路径
            mode (str): 当前处理模式
            
        返回:
            dict: 包含预处理数据的字典
        """
        # 关键点格式转换
        keypoints2d_, mask = convert_kps(keypoints2d_, 'lsp', 'human_data')
        
        # 使用HumanData结构存储数据
        human_data = HumanData()
        human_data['image_path'] = image_path_
        human_data['bbox_xywh'] = bbox_xywh_
        human_data['keypoints2d_mask'] = mask
        human_data['keypoints2d'] = keypoints2d_
        human_data['config'] = 'lsp'
        human_data.compress_keypoints_by_mask()
        
        # 保存预处理数据
        if not os.path.isdir(out_path):
            os.makedirs(out_path)
        out_file = os.path.join(out_path, f'lsp_{mode}.npz')
        human_data.dump(out_file)

3. 关键点格式处理

在实现转换器时,需要注意关键点的格式转换。MMHuman3D提供了统一的关键点约定格式,开发者需要将原始数据集的关键点转换为项目定义的格式。

如果数据集的关键点格式不在现有约定中,需要先定义新的关键点约定格式。

注册转换器

创建好转换器类后,需要在__init__.py文件中注册:

from .lsp import LspConverter

__all__ = [
    'build_data_converter', 'AgoraConverter', 'MpiiConverter', 
    'H36mConverter', ..., 'LspConverter'
]

配置数据集参数

convert_datasets.py文件中添加新数据集的配置:

DATASET_CONFIGS = dict(
    # ...其他数据集配置
    lsp=dict(
        type='LspConverter',  # 转换器类名
        modes=['train', 'test'],  # 支持的模式
        prefix='lsp'  # 数据集文件夹前缀
    )
)

数据集文档说明

为方便其他开发者使用,需要为新数据集添加以下文档信息:

  1. 数据集引用信息:在转换器脚本中添加数据集引用信息
  2. 文件夹结构:说明原始数据集应有的目录结构
  3. 许可证信息:注明数据集的许可协议

测试转换器

完成上述步骤后,可以通过以下命令测试转换器是否正常工作:

python tools/convert_datasets.py \
  --datasets lsp \
  --root_path data/datasets \
  --output_path data/preprocessed_datasets

成功执行后,会在data/preprocessed_datasets目录下生成预处理后的.npz文件。

最佳实践建议

  1. 代码复用:参考现有转换器实现(如COCO、MPII等)可以减少开发工作量
  2. 数据验证:转换完成后建议检查生成的数据是否符合预期
  3. 性能优化:对于大型数据集,可以考虑分批处理以减少内存占用
  4. 错误处理:添加适当的错误处理逻辑,提高转换器的健壮性

通过以上步骤,开发者可以成功为MMHuman3D添加新的数据集支持,扩展项目的应用范围。

mmhuman3d OpenMMLab 3D Human Parametric Model Toolbox and Benchmark mmhuman3d 项目地址: https://gitcode.com/gh_mirrors/mm/mmhuman3d

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

尚榕芯Noelle

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值