ViT-CIFAR 项目使用教程

ViT-CIFAR 项目使用教程

项目地址:https://gitcode.com/gh_mirrors/vi/ViT-CIFAR

1. 项目目录结构及介绍

ViT-CIFAR/
├── data/
├── imgs/
├── logs/
├── weights/
├── .gitignore
├── LICENSE
├── README.md
├── autoaugment.py
├── criterions.py
├── da.py
├── dw_vit.py
├── layers.py
├── main.py
├── ops.py
├── requirements.txt
├── setup.sh
└── utils.py
└── vit.py

目录结构说明

  • data/: 存放训练和测试数据集的目录。
  • imgs/: 存放项目相关的图片文件。
  • logs/: 存放训练日志文件。
  • weights/: 存放训练过程中生成的模型权重文件。
  • .gitignore: Git 忽略文件配置。
  • LICENSE: 项目许可证文件。
  • README.md: 项目说明文档。
  • autoaugment.py: 数据增强相关代码。
  • criterions.py: 损失函数定义。
  • da.py: 数据增强相关代码。
  • dw_vit.py: 深度可分离卷积的 Vision Transformer 实现。
  • layers.py: 自定义网络层定义。
  • main.py: 项目启动文件。
  • ops.py: 自定义操作函数。
  • requirements.txt: 项目依赖库列表。
  • setup.sh: 项目环境配置脚本。
  • utils.py: 项目通用工具函数。
  • vit.py: Vision Transformer 模型定义。

2. 项目启动文件介绍

main.py

main.py 是项目的启动文件,负责训练和测试 Vision Transformer 模型。以下是该文件的主要功能模块:

  • 数据加载: 加载 CIFAR-10 数据集,并进行数据增强。
  • 模型定义: 定义 Vision Transformer 模型。
  • 训练和验证: 使用定义的模型进行训练和验证,并记录训练日志。
  • 模型保存: 保存训练过程中表现最好的模型权重。

使用示例

python main.py --dataset c10 --label-smoothing --autoaugment

3. 项目配置文件介绍

requirements.txt

requirements.txt 文件列出了项目运行所需的 Python 依赖库。可以通过以下命令安装所有依赖:

pip install -r requirements.txt

setup.sh

setup.sh 是一个环境配置脚本,用于设置项目运行环境。可以通过以下命令执行该脚本:

bash setup.sh

其他配置

  • 数据增强: 在 autoaugment.pyda.py 中定义了数据增强的配置。
  • 模型参数: 在 vit.py 中定义了 Vision Transformer 模型的参数配置。
  • 训练参数: 在 main.py 中定义了训练的超参数,如学习率、批量大小等。

通过以上配置文件和启动文件,可以方便地进行 Vision Transformer 模型的训练和测试。

ViT-CIFAR PyTorch implementation for Vision Transformer[Dosovitskiy, A.(ICLR'21)] modified to obtain over 90% accuracy FROM SCRATCH on CIFAR-10 with small number of parameters (= 6.3M, originally ViT-B has 86M). ViT-CIFAR 项目地址: https://gitcode.com/gh_mirrors/vi/ViT-CIFAR

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

吕岚伊

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值