ViT-CIFAR 项目使用教程
项目地址:https://gitcode.com/gh_mirrors/vi/ViT-CIFAR
1. 项目目录结构及介绍
ViT-CIFAR/
├── data/
├── imgs/
├── logs/
├── weights/
├── .gitignore
├── LICENSE
├── README.md
├── autoaugment.py
├── criterions.py
├── da.py
├── dw_vit.py
├── layers.py
├── main.py
├── ops.py
├── requirements.txt
├── setup.sh
└── utils.py
└── vit.py
目录结构说明
- data/: 存放训练和测试数据集的目录。
- imgs/: 存放项目相关的图片文件。
- logs/: 存放训练日志文件。
- weights/: 存放训练过程中生成的模型权重文件。
- .gitignore: Git 忽略文件配置。
- LICENSE: 项目许可证文件。
- README.md: 项目说明文档。
- autoaugment.py: 数据增强相关代码。
- criterions.py: 损失函数定义。
- da.py: 数据增强相关代码。
- dw_vit.py: 深度可分离卷积的 Vision Transformer 实现。
- layers.py: 自定义网络层定义。
- main.py: 项目启动文件。
- ops.py: 自定义操作函数。
- requirements.txt: 项目依赖库列表。
- setup.sh: 项目环境配置脚本。
- utils.py: 项目通用工具函数。
- vit.py: Vision Transformer 模型定义。
2. 项目启动文件介绍
main.py
main.py
是项目的启动文件,负责训练和测试 Vision Transformer 模型。以下是该文件的主要功能模块:
- 数据加载: 加载 CIFAR-10 数据集,并进行数据增强。
- 模型定义: 定义 Vision Transformer 模型。
- 训练和验证: 使用定义的模型进行训练和验证,并记录训练日志。
- 模型保存: 保存训练过程中表现最好的模型权重。
使用示例
python main.py --dataset c10 --label-smoothing --autoaugment
3. 项目配置文件介绍
requirements.txt
requirements.txt
文件列出了项目运行所需的 Python 依赖库。可以通过以下命令安装所有依赖:
pip install -r requirements.txt
setup.sh
setup.sh
是一个环境配置脚本,用于设置项目运行环境。可以通过以下命令执行该脚本:
bash setup.sh
其他配置
- 数据增强: 在
autoaugment.py
和da.py
中定义了数据增强的配置。 - 模型参数: 在
vit.py
中定义了 Vision Transformer 模型的参数配置。 - 训练参数: 在
main.py
中定义了训练的超参数,如学习率、批量大小等。
通过以上配置文件和启动文件,可以方便地进行 Vision Transformer 模型的训练和测试。
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考