GLM-4-9B Chat模型微调实战指南

GLM-4-9B Chat模型微调实战指南

前言

本文将详细介绍如何对GLM-4-9B-Chat对话模型进行微调,帮助开发者快速掌握这一强大语言模型的定制化方法。作为一款开源对话模型,GLM-4-9B在多种场景下展现出卓越的性能,而通过微调,我们可以使其更好地适应特定领域的任务需求。

硬件环境准备

在进行模型微调前,确保您的硬件环境满足以下要求:

测试环境配置

  • 操作系统:Ubuntu 22.04
  • 内存:512GB
  • Python版本:3.10.12或3.12.3(注意:使用3.12.3时需要源码安装nltk)
  • CUDA版本:12.3
  • GPU驱动:535.104.05
  • GPU配置:NVIDIA A100-SXM4-80GB × 8

不同微调方案的资源需求对比

| 微调方法 | 显存占用 | 权重保存大小 | |---------------|----------|------------| | LORA (PEFT) | 约21.5GB | 17MB | | P-Tuning v2 | 约21.4GB | 121MB | | SFT (Zero3) | 约80.9GB | 20GB |

环境配置步骤

  1. 安装基础依赖包
  2. 确保已获取最新版本的模型仓库
  3. 安装微调专用依赖项:
pip install -r requirements.txt

注意:NLTK 3.8.1可能不完全兼容Python 3.12,需要特殊处理。

数据格式规范

微调数据需要遵循特定的JSON格式,以下是关键要点:

基础对话格式

{
  "messages": [
    {"role": "user", "content": "用户输入内容"},
    {"role": "assistant", "content": "助手回复内容"}
  ]
}

带工具调用的复杂对话

{
  "messages": [
    {"role": "system", "content": "", "tools": [...]},
    {"role": "user", "content": "用户请求"},
    {"role": "assistant", "content": "工具调用"},
    {"role": "observation", "content": "工具返回结果"},
    {"role": "assistant", "content": "最终回复"}
  ]
}

重要规则

  • system角色必须出现在user之前,且每个对话只出现一次
  • tools字段必须伴随system角色出现
  • 工具调用时systemcontent必须为空

配置文件详解

配置文件位于config目录,包含三种主要类型:

  1. DeepSpeed配置ds_zero_2/3.json
  2. 微调方法配置
    • lora.yaml
    • ptuning_v2.yaml
    • sft.yaml

关键参数说明

  • 数据配置:
    • train_file/val_file/test_file:数据集路径
    • num_proc:数据加载进程数
  • 训练参数:
    • output_dir:输出目录
    • max_steps:最大训练步数
    • per_device_train_batch_size:每GPU批次大小
  • LORA专用参数:
    • r:LoRA秩
    • lora_alpha:缩放因子
    • lora_dropout:Dropout概率
  • P-TuningV2参数:
    • num_virtual_tokens:虚拟token数量

微调执行指南

多GPU训练(推荐)

OMP_NUM_THREADS=1 torchrun --standalone --nnodes=1 --nproc_per_node=8 finetune_hf.py data/AdvertiseGen/ THUDM/glm-4-9b configs/lora.yaml

单GPU训练

python finetune.py data/AdvertiseGen/ THUDM/glm-4-9b-chat configs/lora.yaml

断点续训

python finetune.py data/AdvertiseGen/ THUDM/glm-4-9b-chat configs/lora.yaml yes  # 自动从最新检查点恢复
python finetune.py data/AdvertiseGen/ THUDM/glm-4-9b-chat configs/lora.yaml 600  # 从指定检查点恢复

微调模型的使用

快速测试

python inference.py your_finetune_path

集成到其他项目

  1. 替换模型加载方式为:
from peft import AutoPeftModelForCausalLM

if (model_dir / 'adapter_config.json').exists():
    model = AutoPeftModelForCausalLM.from_pretrained(model_dir, ...)
else:
    model = AutoModelForCausalLM.from_pretrained(model_dir, ...)
  1. 注意检查adapter_config.json中的base_model_name_or_path路径是否正确

  2. 其他调用方式保持不变

注意事项

  1. 长文本微调(如128K tokens)需要更高配置的硬件
  2. 工具调用微调需要确保数据格式完全正确
  3. 不同微调方法对最终模型性能有显著影响,建议根据任务特点选择

通过本指南,您应该能够顺利完成GLM-4-9B-Chat模型的微调工作,使其更好地服务于您的特定应用场景。

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

<think>好的,用户让我帮忙找一份清华大学出品的DeepSeek从入门到精通的资料。首先,我需要确认DeepSeek是否真的由清华大学开发或者与其有合作关系。根据我的知识库信息,DeepSeek是深度求索公司(DeepSeek Inc.)开发的智能模型,而深度求索是一家专注实现AGI的中国公司,成立于2023年。目前没有证据显示清华大学直接参与开发或出品DeepSeek的相关教程或文档。 用户可能误以为DeepSeek与清华大学有关联,可能是因为清华大学在人工智能领域有较强的学术背景,或者某些项目名称相似导致混淆。需要向用户澄清这一点,避免误导。 接下来,用户的需求是寻找从入门到精通的指南。即使没有清华大学的官方资料,我可以提供通用的学习路径。可能需要包括基础的机器学习知识、深度学习框架使用(如PyTorch)、自然语言处理基础,以及DeepSeek的具体应用场景和最佳实践。此外,建议用户参考官方文档、社区资源以及相关论文或技术博客。 同时,需要考虑用户可能的背景。如果是学生或研究人员,可能需要更理论化的内容;如果是开发者,可能更关注API使用和实际项目应用。需要覆盖不同层次的需求,并推荐合适的资源,比如在线课程、开源项目、论坛讨论等。 另外,需要检查是否有任何合作项目或第三方制作的教程,但需谨慎避免推荐未经核实的内容,确保信息的准确性和可靠性。最后,提醒用户注意版权问题,确保使用的资料合法合规。</think>目前没有公开信息显示清华大学出品过名为《DeepSeek从入门到精通》的官方教程。不过根据DeepSeek相关背景,可提供以下学习路径建议: --- ### **DeepSeek学习路径指南** #### **1. 背景了解** - **官方渠道** 🔗 [深度求索(DeepSeek)官网](https://www.deepseek.com/) 🔗 [GitHub开源项目](https://github.com/deepseek-ai) - 重点关注技术白皮书、模型架构文档 - **学术关联** ※ 清华大学计算机系与智谱AI等团队曾合作研发GLM模型(与DeepSeek同属AGI领域) ※ 建议参考《人工智能前沿技术》等清华公开课 #### **2. 基础准备** | 学习阶段 | 推荐内容 | 资源链接 | |----------------|----------------------------------|-----------------------------------| | 机器学习基础 | 吴恩达《机器学习》课程 | Coursera/网易云课堂 | | 深度学习框架 | PyTorch官方教程 | [pytorch.org](https://pytorch.org)| | 大模型原理 | 《预训练语言模型》专著 | 电子工业出版社 | #### **3. DeepSeek专项学习** - **官方资源** ✅ 模型API文档 ✅ 开源代码解读(如DeepSeek-MoE) ✅ 技术博客(关注低参微调、多模态对齐等特性) - **实践项目** ```python # 示例:API调用 from deepseek import LLM model = LLM(model_name="deepseek-chat") response = model.generate("解释强化学习") ``` - **社区资源** 🚀 Hugging Face模型库 🚀 知乎/掘金技术专栏 🚀 AI Studio实战案例 #### **4. 进阶研究** - 论文精读:《DeepSeek MoE: Towards Ultimate Expert Specialization in Mixture-of-Experts》 - 清华大学交叉信息研究院相关讲座 - 国际顶会论文(NeurIPS/ICLR等) --- #### **⚠️ 重要提示** 1. 警惕非官方渠道的"内部资料" 2. 学术引用需核对论文来源 3. 企业合作项目需通过正规渠道申请 建议通过**深度求索官方技术社区**获取最新学习资源。如需清华相关AI课程资源,可访问: 🔗 [清华大学开放课程平台](https://www.xuetangx.com/) 🔗 清华计算机系《人工智能导论》公开课
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

樊麒朋

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值