Azure MMLSpark 中 Vowpal Wabbit 与 LightGBM 回归算法实战指南

Azure MMLSpark 中 Vowpal Wabbit 与 LightGBM 回归算法实战指南

SynapseML SynapseML 项目地址: https://gitcode.com/gh_mirrors/mm/mmlspark

前言

在大数据机器学习领域,回归问题是常见且重要的任务类型。Azure MMLSpark 作为微软推出的机器学习库,集成了多种高效算法。本文将重点介绍如何使用其中的 Vowpal Wabbit 和 LightGBM 两种算法解决回归问题,并与 Spark MLlib 的线性回归进行对比。

数据集准备

我们选用经典的加州房价数据集,该数据集包含 1990 年美国人口普查的 20640 条记录,每条记录有 8 个特征:

  • 房屋年龄
  • 房间数量
  • 卧室数量
  • 街区人口
  • 家庭数量
  • 收入中位数
  • 房屋位置经度
  • 房屋位置纬度

目标变量是房屋价格中位数(单位:10万美元)。

from sklearn.datasets import fetch_california_housing
california = fetch_california_housing()

将数据转换为 Spark DataFrame 并划分为训练集(75%)和测试集(25%):

train_data, test_data = df.randomSplit([0.75, 0.25], seed=42)

基准模型:Spark MLlib 线性回归

作为基准,我们首先使用 Spark MLlib 的线性回归模型:

from pyspark.ml.regression import LinearRegression

lr = LinearRegression(labelCol="target")
lr_model = lr.fit(lr_train_data)

评估指标包括:

  • MSE(均方误差):0.528
  • RMSE(均方根误差):0.727
  • R²(决定系数):0.605
  • MAE(平均绝对误差):0.534

Vowpal Wabbit 回归

Vowpal Wabbit 是一个高效的在线学习算法,特别适合大规模数据集。

特征处理

from synapse.ml.vw import VowpalWabbitFeaturizer

vw_featurizer = VowpalWabbitFeaturizer(inputCols=feature_cols, outputCol="features")

模型训练

from synapse.ml.vw import VowpalWabbitRegressor

args = "--holdout_off --loss_function quantile -l 0.004 -q :: --power_t 0.3"
vwr = VowpalWabbitRegressor(labelCol="target", passThroughArgs=args, numPasses=100)

评估结果:

  • MSE:0.526
  • RMSE:0.725
  • R²:0.607
  • MAE:0.530

LightGBM 回归

LightGBM 是微软开发的梯度提升框架,具有高效、低内存占用等优点。

模型配置

from synapse.ml.lightgbm import LightGBMRegressor

lgr = LightGBMRegressor(
    objective="quantile",
    alpha=0.2,
    learningRate=0.3,
    numLeaves=31,
    labelCol="target",
    numIterations=100,
)

评估结果:

  • MSE:0.382
  • RMSE:0.618
  • R²:0.715
  • MAE:0.443

模型对比分析

| 模型 | MSE | RMSE | R² | MAE | |------|-----|------|----|-----| | Spark MLlib 线性回归 | 0.528 | 0.727 | 0.605 | 0.534 | | Vowpal Wabbit | 0.526 | 0.725 | 0.607 | 0.530 | | LightGBM | 0.382 | 0.618 | 0.715 | 0.443 |

从结果可以看出:

  1. LightGBM 表现最佳,各项指标均优于其他两种方法
  2. Vowpal Wabbit 与 Spark MLlib 线性回归性能相近
  3. 对于大数据集,LightGBM 和 Vowpal Wabbit 都具有较好的扩展性

可视化分析

通过实际值-预测值散点图可以直观比较各模型表现:

  1. Spark MLlib 线性回归:预测值与实际值基本呈线性关系,但部分高价值房屋预测偏差较大
  2. Vowpal Wabbit:与线性回归类似,但在极端值预测上略有改善
  3. LightGBM:预测点更紧密地分布在对角线附近,特别是对高价值房屋的预测更准确

最佳实践建议

  1. 数据规模考虑

    • 小到中型数据:优先尝试 LightGBM
    • 超大规模数据:考虑 Vowpal Wabbit 的在线学习能力
  2. 特征工程

    • 对于 Vowpal Wabbit,可以利用其内置的特征哈希功能
    • LightGBM 对特征缩放不敏感,但类别特征需要特别处理
  3. 参数调优

    • LightGBM 可调整 numLeaves、learningRate 等参数
    • Vowpal Wabbit 需关注学习率(-l)和特征交互(-q)参数
  4. 计算资源

    • LightGBM 训练时可适当增加 numIterations
    • Vowpal Wabbit 可通过调整 numPasses 控制迭代次数

总结

本文通过加州房价预测案例,展示了 Azure MMLSpark 中三种回归算法的使用方法与性能对比。LightGBM 展现了最佳的预测性能,而 Vowpal Wabbit 则在大规模数据场景下表现出色。开发者可根据具体业务场景和数据特点选择合适的算法。

SynapseML SynapseML 项目地址: https://gitcode.com/gh_mirrors/mm/mmlspark

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

凤红令Nathania

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值