Azure MMLSpark 中 Vowpal Wabbit 与 LightGBM 回归算法实战指南
SynapseML 项目地址: https://gitcode.com/gh_mirrors/mm/mmlspark
前言
在大数据机器学习领域,回归问题是常见且重要的任务类型。Azure MMLSpark 作为微软推出的机器学习库,集成了多种高效算法。本文将重点介绍如何使用其中的 Vowpal Wabbit 和 LightGBM 两种算法解决回归问题,并与 Spark MLlib 的线性回归进行对比。
数据集准备
我们选用经典的加州房价数据集,该数据集包含 1990 年美国人口普查的 20640 条记录,每条记录有 8 个特征:
- 房屋年龄
- 房间数量
- 卧室数量
- 街区人口
- 家庭数量
- 收入中位数
- 房屋位置经度
- 房屋位置纬度
目标变量是房屋价格中位数(单位:10万美元)。
from sklearn.datasets import fetch_california_housing
california = fetch_california_housing()
将数据转换为 Spark DataFrame 并划分为训练集(75%)和测试集(25%):
train_data, test_data = df.randomSplit([0.75, 0.25], seed=42)
基准模型:Spark MLlib 线性回归
作为基准,我们首先使用 Spark MLlib 的线性回归模型:
from pyspark.ml.regression import LinearRegression
lr = LinearRegression(labelCol="target")
lr_model = lr.fit(lr_train_data)
评估指标包括:
- MSE(均方误差):0.528
- RMSE(均方根误差):0.727
- R²(决定系数):0.605
- MAE(平均绝对误差):0.534
Vowpal Wabbit 回归
Vowpal Wabbit 是一个高效的在线学习算法,特别适合大规模数据集。
特征处理
from synapse.ml.vw import VowpalWabbitFeaturizer
vw_featurizer = VowpalWabbitFeaturizer(inputCols=feature_cols, outputCol="features")
模型训练
from synapse.ml.vw import VowpalWabbitRegressor
args = "--holdout_off --loss_function quantile -l 0.004 -q :: --power_t 0.3"
vwr = VowpalWabbitRegressor(labelCol="target", passThroughArgs=args, numPasses=100)
评估结果:
- MSE:0.526
- RMSE:0.725
- R²:0.607
- MAE:0.530
LightGBM 回归
LightGBM 是微软开发的梯度提升框架,具有高效、低内存占用等优点。
模型配置
from synapse.ml.lightgbm import LightGBMRegressor
lgr = LightGBMRegressor(
objective="quantile",
alpha=0.2,
learningRate=0.3,
numLeaves=31,
labelCol="target",
numIterations=100,
)
评估结果:
- MSE:0.382
- RMSE:0.618
- R²:0.715
- MAE:0.443
模型对比分析
| 模型 | MSE | RMSE | R² | MAE | |------|-----|------|----|-----| | Spark MLlib 线性回归 | 0.528 | 0.727 | 0.605 | 0.534 | | Vowpal Wabbit | 0.526 | 0.725 | 0.607 | 0.530 | | LightGBM | 0.382 | 0.618 | 0.715 | 0.443 |
从结果可以看出:
- LightGBM 表现最佳,各项指标均优于其他两种方法
- Vowpal Wabbit 与 Spark MLlib 线性回归性能相近
- 对于大数据集,LightGBM 和 Vowpal Wabbit 都具有较好的扩展性
可视化分析
通过实际值-预测值散点图可以直观比较各模型表现:
- Spark MLlib 线性回归:预测值与实际值基本呈线性关系,但部分高价值房屋预测偏差较大
- Vowpal Wabbit:与线性回归类似,但在极端值预测上略有改善
- LightGBM:预测点更紧密地分布在对角线附近,特别是对高价值房屋的预测更准确
最佳实践建议
-
数据规模考虑:
- 小到中型数据:优先尝试 LightGBM
- 超大规模数据:考虑 Vowpal Wabbit 的在线学习能力
-
特征工程:
- 对于 Vowpal Wabbit,可以利用其内置的特征哈希功能
- LightGBM 对特征缩放不敏感,但类别特征需要特别处理
-
参数调优:
- LightGBM 可调整 numLeaves、learningRate 等参数
- Vowpal Wabbit 需关注学习率(-l)和特征交互(-q)参数
-
计算资源:
- LightGBM 训练时可适当增加 numIterations
- Vowpal Wabbit 可通过调整 numPasses 控制迭代次数
总结
本文通过加州房价预测案例,展示了 Azure MMLSpark 中三种回归算法的使用方法与性能对比。LightGBM 展现了最佳的预测性能,而 Vowpal Wabbit 则在大规模数据场景下表现出色。开发者可根据具体业务场景和数据特点选择合适的算法。
SynapseML 项目地址: https://gitcode.com/gh_mirrors/mm/mmlspark
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考