树莓派语音助手 PI-Assistant 使用教程

树莓派语音助手 PI-Assistant 使用教程

PI-Assistant 基于树莓派和GPT实现的多功能语音家庭助手 PI-Assistant 项目地址: https://gitcode.com/gh_mirrors/pi/PI-Assistant

1. 项目介绍

PI-Assistant 是一个基于树莓派的开源多功能语音助手项目。它集成了多种功能,包括语音识别、语音合成、智能家居控制等,用户可以通过语音与助手进行交互,实现音乐播放、日程提醒、设备控制等功能。

2. 项目快速启动

环境准备

  • 树莓派一台(建议使用4B型号)
  • 树莓派操作系统(建议使用最新的Raspberry Pi OS)
  • 网络连接

安装依赖

首先,确保你的树莓派已经连接到互联网,然后使用以下命令安装所需的Python模块:

pip install azure-cognitiveservices-speech loguru requests arcade RPi.GPIO pydub numpy sounddevice pymysql cn2an duckduckgo_search flask SpeechRecognition openai pyaudio websocket-client paho-mqtt

配置文件

根据你的需求,修改 const_config.pyconfig.py 文件中的配置项。

  • const_config.py 中可以设置API密钥、代理端口等。
  • config.py 中可以设置初始参数,如唤醒词等。

启动服务

启动音乐服务和主程序:

python server.py

启动后,你可以通过唤醒词“助手晓晓”来唤醒语音助手,并进行语音交互。

3. 应用案例和最佳实践

语音交互

在配置好唤醒词之后,用户可以通过语音与PI-Assistant进行交互,例如:

  • 播放音乐:“助手晓晓,播放音乐。”
  • 设置提醒:“助手晓晓,明天早上7点叫我起床。”

智能家居控制

通过集成的智能家居控制功能,用户可以控制家中的智能设备,例如:

  • 打开灯光:“助手晓晓,打开客厅的灯。”
  • 调整温度:“助手晓晓,把空调温度调到24度。”

4. 典型生态项目

PI-Assistant 可以与以下典型生态项目集成:

  • HomeAssistant:通过HomeAssistant的API控制智能家居设备。
  • MQTT协议:支持MQTT协议的设备可以与PI-Assistant集成,实现远程控制。

通过上述集成,PI-Assistant 可以成为一个强大的智能家居中心,用户可以自由定制和控制各种智能家居设备。

PI-Assistant 基于树莓派和GPT实现的多功能语音家庭助手 PI-Assistant 项目地址: https://gitcode.com/gh_mirrors/pi/PI-Assistant

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

### 解决方案 `Descriptors cannot be created directly` 的 `TypeError` 是由于 Protobuf 库版本不兼容引起的。当 `_pb2.py` 文件由旧版 `protoc` 编译器生成时,如果使用的 Python 版本的 `protobuf` 包高于编译器支持的版本,则会出现此错误。 以下是几种解决方案: #### 方法一:重新生成 `_pb2.py` 文件 通过升级 `protoc` 编译器至 >= 3.19.0 并重新生成 `.proto` 文件对应的 `_pb2.py` 文件来解决问题[^1]。 ```bash # 安装最新版本的 protoc 工具 sudo apt-get update && sudo apt-get install -y protobuf-compiler # 使用 protoc 命令重新生成 .proto 文件 protoc --python_out=./ path/to/your_file.proto ``` 完成上述操作后,确保删除旧的 `_pb2.py` 和 `_pb2_grpc.py` 文件并替换为新生成的文件。 --- #### 方法二:降级 `protobuf` 包 如果不方便重新生成 `_pb2.py` 文件,可以通过降级 `protobuf` 包到 3.20.x 或更低版本解决该问题[^3][^4]。 ```bash pip uninstall protobuf pip install protobuf==3.20.1 ``` 注意:降级可能会影响依赖于较新版 `protobuf` 的其他库的功能,请谨慎操作。 --- #### 方法三:设置环境变量 另一种临时方法是通过设置环境变量强制使用纯 Python 实现解析,但这会显著降低性能。 ```bash export PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python ``` 在运行脚本前执行以上命令即可生效。 --- #### 方法四:检查 TensorRT 及其依赖项的影响 安装 TensorRT 后可能导致某些依赖冲突,尤其是涉及 `protobuf` 的部分。建议验证当前环境中是否存在多个版本的 `protobuf` 包,并清理冗余版本: ```bash pip list | grep protobuf pip uninstall protobuf -y pip install protobuf==<目标版本> ``` --- ### 总结 推荐优先尝试 **方法一**(重新生成 `_pb2.py`),因为这是最彻底的解决方案;其次可选择 **方法二**(降级 `protobuf`)。若需快速测试可用性,可以选择 **方法三** 设置环境变量作为权宜之计。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

杨女嫚

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值