【亲测免费】 OpenLLM 使用教程

OpenLLM 使用教程

项目介绍

OpenLLM 是一个开源项目,旨在让开发者能够轻松地运行任何开源的大型语言模型(LLMs),如 Llama 3、Qwen2、Phi3 等,或者自定义模型,并将其作为与 OpenAI 兼容的 API 进行访问。OpenLLM 提供了一个内置的聊天 UI、先进的推理后端,以及一个简化的工作流程,用于创建企业级的云部署,支持 Docker、Kubernetes 和 BentoCloud。

项目快速启动

安装 OpenLLM

首先,你需要安装 OpenLLM。你可以通过以下命令来安装:

pip install openllm

运行 OpenLLM

安装完成后,你可以通过以下命令来运行 OpenLLM:

openllm hello

启动聊天 UI

OpenLLM 提供了一个聊天 UI,你可以通过访问 http://localhost:3000/chat 来使用它。

在 CLI 中聊天

你也可以在命令行中启动一个聊天会话,使用以下命令:

openllm run llama3:8b

应用案例和最佳实践

企业级云部署

OpenLLM 支持通过 Docker 和 Kubernetes 进行企业级云部署。你可以使用 BentoCloud 来简化部署过程。

自定义模型

你可以添加一个模型仓库来运行自定义模型。OpenLLM 提供了一个默认的模型仓库,包含最新的开源 LLMs,如 Llama 3、Mistral 和 Qwen2。

典型生态项目

BentoML

BentoML 是一个用于构建、部署和管理机器学习模型的开源框架。OpenLLM 与 BentoML 紧密集成,使得模型部署更加简单和高效。

vLLM

如果你在 GPU 上运行 OpenLLM,推荐使用 vLLM 运行时。你可以通过以下命令来安装:

pip install "openllm[vllm]"

通过这些步骤,你可以快速启动并使用 OpenLLM,进行企业级的云部署,并探索其丰富的生态项目。

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

04-04
### OpenLLM 使用指南 #### 安装与环境准备 为了在AMD GPU上使用OpenLLM,需遵循ROCm博客中的逐步指导[^1]。这包括设置必要的依赖项以及确保GPU驱动程序和库已正确安装。 #### 启动服务 要启动OpenLLM服务器并加载特定的大规模语言模型(如`flan-t5`),可执行如下命令: ```bash openllm start flan-t5 ``` 此命令不仅初始化了指定的模型,还设置了兼容API接口的服务于本地地址 `http://localhost:3000` 上运行][^[^25]。 #### 访问方式 一旦服务器成功部署,无论是通过HTTP还是gRPC协议,都可以轻松连接至该OpenLLM实例,不论它是位于本地机器或是远程云环境中工作[^2]。 #### 存储位置 对于由Ollama管理的模型,默认情况下它们会被保存在不同操作系统下的固定目录里。例如,在macOS系统下为`~/.ollama/models`;而在Linux环境下则是 `/usr/share/ollama/.ollama/models` 等等[^4]。 #### 生产级优化 借助OpenLLM框架的帮助,能够极大简化大规模语言模型在实际应用场景里的运维流程,并且提供了诸如灵活调整服务器状态等功能支持,从而让开发人员可以把更多精力投入到创造性的AI应用程序设计当中去[^3]。 #### 默认配置解析 项目附带了一个名为`default_config.yaml` 的默认配置文件,其中定义了一些基础参数设定比如主机名(`host`)、端口编号(`port`)还有记录等级(`log_level`)等内容。另外也列出了各个预训练好的神经网络所对应的磁盘路径信息[^5]: ```yaml server: host: "0.0.0.0" port: 3000 log_level: "info" models: llama3: path: "path/to/llama3/model" qwen2: path: "path/to/qwen2/model" ``` ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

雷竹榕

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值