DEAP库动态差分进化算法实现解析

DEAP库动态差分进化算法实现解析

deap Distributed Evolutionary Algorithms in Python deap 项目地址: https://gitcode.com/gh_mirrors/de/deap

动态优化问题概述

动态优化问题(Dynamic Optimization Problems)是指目标函数或约束条件随时间变化的优化问题。这类问题在现实世界中广泛存在,如金融市场的投资组合优化、机器人路径规划、网络资源分配等。传统的静态优化算法难以应对这类问题,因此需要专门的动态优化算法。

动态差分进化算法(DynDE)简介

动态差分进化算法(Dynamic Differential Evolution, DynDE)是Mendes和Mohais在2005年提出的一种针对动态优化问题的改进差分进化算法。DEAP库中的这个示例展示了如何实现DynDE算法来解决动态优化问题。

算法核心组件

1. 动态测试环境设置

示例中使用Moving Peaks Benchmark(MPB)作为动态测试环境:

scenario = movingpeaks.SCENARIO_2
NDIM = 5
BOUNDS = [scenario["min_coord"], scenario["max_coord"]]
mpb = movingpeaks.MovingPeaks(dim=NDIM, **scenario)

MPB模拟了多个移动的峰值,每个峰值代表一个潜在的优化目标,随着时间变化,峰值的位置和高度会发生变化,模拟真实世界中的动态环境。

2. 个体和种群表示

creator.create("FitnessMax", base.Fitness, weights=(1.0,))
creator.create("Individual", array.array, typecode='d', fitness=creator.FitnessMax)

toolbox = base.Toolbox()
toolbox.register("attr_float", random.uniform, BOUNDS[0], BOUNDS[1])
toolbox.register("individual", tools.initRepeat, creator.Individual, toolbox.attr_float, NDIM)

这里定义了最大化适应度的个体,使用双精度数组存储个体的基因,并设置了适合度评估函数。

3. 布朗运动个体生成

def brown_ind(iclass, best, sigma):
    return iclass(random.gauss(x, sigma) for x in best)

toolbox.register("brownian_individual", brown_ind, creator.Individual, sigma=0.3)

布朗运动个体生成器用于在最优个体周围产生随机扰动,帮助算法探索新的可能解空间,这对于跟踪动态变化的最优解至关重要。

算法主流程

1. 初始化阶段

NPOP = 10   # 子种群数量,等于峰值数量
regular, brownian = 4, 2  # 常规个体和布朗运动个体数量
populations = [toolbox.population(n=regular + brownian) for _ in range(NPOP)]

算法维护多个子种群,每个子种群包含常规个体和布朗运动个体,目的是跟踪多个可能的峰值。

2. 动态变化检测

bests = [toolbox.best(subpop)[0] for subpop in populations]
if any(b.fitness.values != toolbox.evaluate(b) for b in bests):
    for individual in itertools.chain(*populations):
        del individual.fitness.values

通过定期重新评估最优个体来检测环境是否发生变化。如果发现变化,则使所有个体的适应度失效,强制重新评估。

3. 排斥机制

rexcl = (BOUNDS[1] - BOUNDS[0]) / (2 * NPOP**(1.0/NDIM))
for i, j in itertools.combinations(range(NPOP), 2):
    if bests[i].fitness.valid and bests[j].fitness.valid:
        d = sum((bests[i][k] - bests[j][k])**2 for k in range(NDIM))
        d = math.sqrt(d)
        if d < rexcl:
            # 保留较优种群,重置较差种群

排斥机制确保不同子种群追踪不同的峰值。当两个子种群的最优解过于接近时,重置表现较差的种群。

4. 进化阶段

每个子种群独立进化,包含两部分:

  1. 常规差分进化
for individual in subpop[:regular]:
    x1, x2, x3, x4 = toolbox.select(subpop)
    offspring = toolbox.clone(individual)
    index = random.randrange(NDIM)
    for i, value in enumerate(individual):
        if i == index or random.random() < CR:
            offspring[i] = xbest[i] + F * (x1[i] + x2[i] - x3[i] - x4[i])
  1. 布朗运动个体生成
newpop.extend(toolbox.brownian_individual(xbest) for _ in range(brownian))

这种混合策略既保持了差分进化算法的局部搜索能力,又通过布朗运动增强了全局探索能力。

算法特点分析

  1. 多子种群结构:能够同时追踪多个最优解,适合多峰动态环境。

  2. 动态检测机制:通过定期重新评估检测环境变化,及时响应。

  3. 混合进化策略:结合常规差分进化和布朗运动,平衡开发与探索。

  4. 排斥机制:避免子种群收敛到同一峰值,维持种群多样性。

实际应用建议

  1. 参数调整:根据实际问题调整子种群数量、布朗运动强度等参数。

  2. 变化检测频率:可以根据问题特性调整检测频率,平衡计算开销和响应速度。

  3. 并行化:由于子种群独立进化,算法天然适合并行计算。

  4. 适应度评估:对于计算代价高的实际问题,可能需要设计代理模型来加速适应度评估。

这个实现展示了DEAP库在解决复杂动态优化问题方面的强大能力,通过灵活的组件设计和组合,可以构建出适应各种场景的进化算法解决方案。

deap Distributed Evolutionary Algorithms in Python deap 项目地址: https://gitcode.com/gh_mirrors/de/deap

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

班岑航Harris

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值