开源项目使用教程:OpenCoder-llm

开源项目使用教程:OpenCoder-llm

OpenCoder-llm The Open Cookbook for Top-Tier Code Large Language Model OpenCoder-llm 项目地址: https://gitcode.com/gh_mirrors/op/OpenCoder-llm

1. 项目介绍

OpenCoder-llm 是一个开源的代码大型语言模型(LLM)项目,旨在提供一种开放和可复制的代码生成与理解能力。该项目包括 1.5B 和 8B 基础及聊天模型,支持英文和中文两种语言。OpenCoder-llm 从零开始预训练,使用了 2.5 万亿个标记,其中 90% 为原始代码,10% 为代码相关网页数据,并在超过 4.5M 的高质量 SFT 示例上进行监督微调,最终达到了顶级代码 LLM 的性能。

2. 项目快速启动

首先,确保你已经安装了 Python 和必要的库。以下是一个快速启动示例,展示如何使用 OpenCoder-llm 模型生成代码。

import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

# 选择模型
model_name = "infly/OpenCoder-8B-Instruct"

# 加载模型和分词器
model = AutoModelForCausalLM.from_pretrained(
    model_name,
    torch_dtype=torch.bfloat16,
    device_map="auto",
    trust_remote_code=True
)
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)

# 创建输入消息
messages = [
    {
        'role': 'user',
        'content': "编写一个快速排序算法的 Python 代码。"
    }
]

# 应用聊天模板并获取输入
inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt")

# 生成代码
outputs = model.generate(inputs, max_new_tokens=512, do_sample=False)

# 解码输出结果
result = tokenizer.decode(outputs[0][len(inputs[0]):], skip_special_tokens=True)

# 打印结果
print(result)

3. 应用案例和最佳实践

应用案例

  • 代码生成:自动生成代码片段,提高开发效率。
  • 代码补全:在编写代码时,自动补全代码,减少编码错误。
  • 代码理解:理解代码的功能和结构,辅助代码审查和重构。

最佳实践

  • 数据准备:确保使用高质量的数据集进行训练,以便模型能够学习到有效的代码模式。
  • 模型调整:根据具体应用场景调整模型参数,以达到最佳效果。
  • 持续迭代:定期使用新的数据对模型进行微调,以保持其相关性和准确性。

4. 典型生态项目

OpenCoder-llm 的生态项目包括但不限于:

  • 数据清洗工具:用于创建高质量代码预训练语料库的数据清洗管道。
  • 代码评价框架:用于评估代码语言模型的性能。
  • 预训练数据集:包括算法相关数据集及其对应的合成数据。

通过这些生态项目,用户可以更好地集成和使用 OpenCoder-llm,以实现多样化的代码生成和理解任务。

OpenCoder-llm The Open Cookbook for Top-Tier Code Large Language Model OpenCoder-llm 项目地址: https://gitcode.com/gh_mirrors/op/OpenCoder-llm

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

贾耀斐

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值