AgentBench快速上手:从零开始的智能体评测完全指南

AgentBench快速上手:从零开始的智能体评测完全指南

【免费下载链接】AgentBench A Comprehensive Benchmark to Evaluate LLMs as Agents (ICLR'24) 【免费下载链接】AgentBench 项目地址: https://gitcode.com/gh_mirrors/ag/AgentBench

项目概述

AgentBench是由THUDM开发的一个综合性评测框架,旨在评估大型语言模型(LLMs)作为智能体在不同环境下的性能表现。该项目通过多个不同的环境来全面评估LLM的自主操作能力,为研究者和开发者提供一个标准化的智能体能力评估平台。

核心功能特性

AgentBench具备以下核心功能:

  • 多环境评测:涵盖操作系统、数据库、知识图谱、数字卡牌游戏等8个不同环境
  • 标准化接口:提供统一的Agent-Task交互接口
  • 可扩展架构:支持新任务环境的快速集成
  • 函数调用支持:基于AgentRL框架的函数调用版本

系统架构设计

AgentBench采用模块化设计,将系统分为三个主要组件:

  • Agent服务器:负责智能体的推理和决策
  • Task服务器:提供任务环境的执行和反馈
  • 客户端:协调任务分配和结果收集

AgentBench系统架构

快速开始指南

环境准备

首先克隆项目并安装依赖:

git clone https://gitcode.com/gh_mirrors/ag/AgentBench
cd AgentBench
conda create -n agent-bench python=3.9
conda activate agent-bench
pip install -r requirements.txt

Docker环境配置

确保Docker已正确安装:

docker ps

构建所需的Docker镜像:

# dbbench任务
docker pull mysql:8

# os_interaction任务
docker build -t local-os/default -f ./data/os_interaction/res/dockerfiles/default data/os_interaction/res/dockerfiles
docker build -t local-os/packages -f ./data/os_interaction/res/dockerfiles/packages data/os_interaction/res/dockerfiles
docker build -t local-os/ubuntu -f ./data/os_interaction/res/dockerfiles/ubuntu data/os_interaction/res/dockerfiles

智能体配置

configs/agents/openai-chat.yaml文件中配置你的API密钥:

api_key: your_openai_key_here
model: gpt-3.5-turbo-0613

服务启动

使用Docker Compose一键启动所有服务:

docker compose -f extra/docker-compose.yml up

该命令将启动以下服务:

  • AgentRL控制器
  • 各任务的工作进程
  • Freebase服务器
  • Redis服务器

任务测试

验证智能体配置是否正确:

python -m src.client.agent_test

如果需要使用其他智能体:

python -m src.client.agent_test --config configs/agents/api_agents.yaml --agent gpt-3.5-turbo-0613

评测任务详解

操作系统环境(OS)

评估LLM在真实操作系统环境中的交互能力,包括文件操作、用户管理等任务。

数据库环境(DB)

测试LLM在真实数据库环境中的SQL操作能力,涵盖复杂查询和数据操作。

知识图谱环境(KG)

基于Freebase知识图谱,评估智能体在部分可观测环境中的决策能力。

数字卡牌游戏(DCG)

通过简化版卡牌游戏Aquawar,评估LLM的策略规划和决策能力。

性能统计

资源消耗说明

各任务的资源消耗情况如下:

任务名称启动时间内存消耗
webshop~3分钟~15GB
mind2web~5分钟~1GB
db~20秒< 500MB
alfworld~10秒< 500MB
card_game~5秒< 500MB
ltp~5秒< 500MB
os~5秒< 500MB
kg~5秒< 500MB

评测结果展示

AgentBench提供了详细的评测结果和排行榜,帮助用户了解不同模型的性能表现。

排行榜

扩展与定制

AgentBench支持新任务的快速集成,开发者可以参考扩展指南文档添加自定义任务环境。框架的模块化设计使得每个组件都可以独立开发和部署。

注意事项

  • webshop环境需要约16GB内存才能启动
  • alfworld任务存在内存和磁盘空间泄漏问题,需要定期重启工作进程
  • 确保机器有足够的资源后再运行评测任务

生态项目推荐

  • VisualAgentBench:专门用于评估和训练基于大型多模态模型的视觉基础智能体
  • AgentRL:端到端多任务多轮LLM智能体强化学习框架

通过本指南,你可以快速上手AgentBench,开始对大型语言模型的智能体能力进行全面评估。该框架的标准化设计和丰富的任务环境,为智能体研究和开发提供了强有力的支持。

【免费下载链接】AgentBench A Comprehensive Benchmark to Evaluate LLMs as Agents (ICLR'24) 【免费下载链接】AgentBench 项目地址: https://gitcode.com/gh_mirrors/ag/AgentBench

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值