MMsegmentation项目中贡献自定义数据集的完整指南

MMsegmentation项目中贡献自定义数据集的完整指南

mmsegmentation OpenMMLab Semantic Segmentation Toolbox and Benchmark. mmsegmentation 项目地址: https://gitcode.com/gh_mirrors/mm/mmsegmentation

前言

在计算机视觉领域,语义分割是一项基础而重要的任务。MMsegmentation作为开源的语义分割工具箱,支持多种主流算法和数据集。本文将详细介绍如何在MMsegmentation项目中贡献一个标准格式的数据集,以高分2号卫星遥感图像数据集(GID)为例,帮助开发者理解数据集贡献的全流程。

环境准备

在开始数据集贡献前,需要配置好开发环境:

  1. Python环境:建议使用Python 3.8版本
  2. PyTorch:根据官方文档安装适合您系统的PyTorch版本
  3. MMCV和MMEngine:使用MIM工具安装最新版本
pip install -U openmim
mim install mmengine
mim install "mmcv>=2.0.0"

数据集分析

GID数据集是我国自主研发的高分2号卫星拍摄的遥感图像数据集,具有以下特点:

  • 图像尺寸:6800×7200像素
  • 通道数:RGB三通道
  • 标注类型:两种不同类别数的RGB标签(5类和15类)
  • 5类标签包含:背景、建筑、农田、森林、草地和水体

在贡献数据集前,需要将大尺寸图像裁剪为512×512的小图,并将RGB标签转换为单通道mask标签。

数据集贡献流程

1. 创建项目目录

mmsegmentation/projects下创建数据集专属目录gid_dataset,用于存放所有相关代码和配置文件。

2. 数据集转换工具

开发数据集转换脚本tools/dataset_converters/gid.py,主要功能包括:

  • 图像裁剪:将大图分割为小图
  • 标签转换:RGB标签转单通道mask
  • 数据集划分:自动划分训练集和验证集

关键实现点:

def RGB2mask(RGB_label, colormap2label_list):
    # 将RGB三通道标签转换为单通道mask
    idx = (RGB_label[:, :, 0] * 256 + RGB_label[:, :, 1]) * 256 + RGB_label[:, :, 2]
    return colormap2label_list[idx]

3. 数据集类定义

mmseg/datasets/gid.py中定义数据集类,需要指定:

  • 类别名称(classes)
  • 调色板(palette)
  • 图像和标签后缀
  • 是否忽略零标签(reduce_zero_label)

示例代码:

@DATASETS.register_module()
class GID_Dataset(BaseSegDataset):
    METAINFO = dict(
        classes=('Others', 'Built-up', 'Farmland', 'Forest', 'Meadow', 'Water'),
        palette=[[0, 0, 0], [255, 0, 0], [0, 255, 0], 
                [0, 255, 255], [255, 255, 0], [0, 0, 255]])

4. 配置文件

创建训练配置文件,需要包含:

  • 基础模型配置
  • 数据集配置
  • 训练策略
  • 评估指标

示例配置:

_base_ = [
    '../../../configs/_base_/models/deeplabv3plus_r50-d8.py',
    './_base_/datasets/gid.py',
    '../../../configs/_base_/default_runtime.py',
    '../../../configs/_base_/schedules/schedule_240k.py'
]

5. 文档编写

docs/zh_cn/user_guides/2_dataset_prepare.md中添加数据集文档,内容包括:

  • 数据集简介
  • 下载地址
  • 数据预处理方法
  • 目录结构说明
  • 使用示例

代码提交规范

提交代码前需要确保:

  1. 通过pre-commit检查代码格式
  2. 提交信息清晰描述修改内容
  3. 保持代码风格与项目一致

最佳实践建议

  1. 数据集选择:优先选择具有学术价值或工业应用潜力的数据集
  2. 代码复用:参考已有数据集实现,减少重复工作
  3. 性能验证:提供基准模型在数据集上的性能指标
  4. 文档完整:详细说明数据集特点和使用方法
  5. 持续维护:及时响应社区关于数据集的疑问

结语

贡献数据集是参与开源项目的重要方式之一。通过本文的指导,开发者可以系统地了解在MMsegmentation中贡献数据集的完整流程。规范的代码和文档不仅有利于项目维护,也能帮助更多研究者使用您贡献的数据集。期待更多优质数据集加入MMsegmentation生态,共同推动语义分割技术的发展。

mmsegmentation OpenMMLab Semantic Segmentation Toolbox and Benchmark. mmsegmentation 项目地址: https://gitcode.com/gh_mirrors/mm/mmsegmentation

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

资源下载链接为: https://pan.quark.cn/s/9a27693985af 《基于SSM的JSP招聘网》是一款功能丰富的在线招聘平台,主要面向普通游客、求职者、企业和管理员四种用户角色,提供了多样化的服务与管理功能。该系统采用SSM(Spring、SpringMVC、MyBatis)技术栈开发,确保了系统的稳定性与高效性。以下是对系统功能模块及其技术实现的介绍。 对于普通游客,系统提供职位浏览功能。游客可以查看平台上的各种招聘信息,如职位描述、工作职责、薪资待遇等。这需要后台数据库对招聘信息进行有效存储和检索。在SSM框架中,SpringMVC负责处理HTTP请求,将数据传递给Spring服务层进行业务逻辑处理,MyBatis作为持久层工具,执行SQL查询并将结果映射为Java对象。 求职者注册成为平台用户后,可进行职位收藏和投递。收藏的职位信息会保存在个人中心,方便随时查看。职位投递功能涉及用户个人信息与简历的提交,需要系统具备用户认证和授权机制,可通过Spring Security或Apache Shiro实现。此外,系统可能采用AJAX技术进行异步操作,如即时刷新收藏夹状态,以提升用户体验。 企业用户可在系统中发布职位、查看求职者简历。发布职位时,需进行表单验证和数据合法性检查,SpringMVC的控制器可协同前端校验库(如Hibernate Validator)完成。查看简历时,企业可对求职者进行筛选和评价,这要求数据库设计合理,以便快速查询和分析求职者信息。 管理员负责管理平台运行,包括用户管理、职位审核、系统设置等。管理员模块通常包含后台管理界面,通过SpringMVC的模型视图解析器和模板引擎(如Thymeleaf或FreeMarker)生成动态页面。同时,日志记录和异常处理必不可少,Spring框架提供了强大的日志和AOP支持,可方便实现这些功
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

水鲁焘

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值