使用PyTorch实现指数移动平均(EMA):EMA-Pytorch完全指南

使用PyTorch实现指数移动平均(EMA):EMA-Pytorch完全指南

ema-pytorch A simple way to keep track of an Exponential Moving Average (EMA) version of your pytorch model ema-pytorch 项目地址: https://gitcode.com/gh_mirrors/em/ema-pytorch

概览

EMA-Pytorch 是一个轻量级库,用于在Pytorch模型训练过程中追踪网络参数的指数移动平均值。这有助于提升模型的泛化性能并提供一种平滑参数变化的方法。本文档将引导您完成从安装到应用此库于深度学习模型的全过程。

安装指南

通过pip安装非常简单:

pip install ema-pytorch

这个命令会下载并安装ema-pytorch包,使您能够立刻在Pytorch项目中利用EMA功能。

项目使用说明

标准EMA使用

初始化EMA对象

首先,导入必要的模块并实例化您的神经网络。以一个简单的线性层为例:

import torch
from ema_pytorch import EMA

net = torch.nn.Linear(512, 512)
ema = EMA(net, beta=0.9999, update_after_step=100, update_every=10)

这里的beta是EMA因子,决定了过去数据的遗忘速度;update_after_stepupdate_every控制了EMA更新的起始步数和频率。

更新及应用EMA

在模型训练过程中,定期调用ema.update()进行EMA计算。之后,使用ema(data)来获取经过EMA处理后的模型输出。

# 假设进行了模型权重的修改
with torch.no_grad():
    net.weight.copy_(torch.randn_like(net.weight))
    net.bias.copy_(torch.randn_like(net.bias))

ema.update()
output = net(torch.randn(1, 512))
ema_output = ema(torch.randn(1, 512))

后合成EMA(Post-Hoc EMA)

如果您想采用后合成EMA方法,如Karras等人的论文所述,流程稍有不同:

from ema_pytorch import PostHocEMA

emas = PostHocEMA(
    net,
    sigma_rels=(0.05, 0.3),
    update_every=10,
    checkpoint_every_num_steps=10,
    checkpoint_folder='./post-hoc-ema-checkpoints'
)

# 训练过程中的更新
for _ in range(1000):
    with torch.no_grad():
        net.weight.copy_(torch.randn_like(net.weight))
        net.bias.copy_(torch.randn_like(net.bias))
    emas.update()

# 合成新的EMA模型
synthesized_ema = emas.synthesize_ema_model(sigma_rel=0.15)
synthesized_ema_output = synthesized_ema(torch.randn(1, 512))

在这个例子中,sigma_rels是用于多个EMA的超参数,需要至少两个值来合成一个新的EMA模型。训练过程中,每个指定的步骤都会保存检查点,以便后续合成不同的EMA模型。

API使用文档简述

  • EMA(model, beta, update_after_step, update_every): 初始化EMA类。

    • model: Pytorch模型。
    • beta: EMA衰减系数。
    • update_after_step: 开始更新前的最小步骤数。
    • update_every: 每多少次更新操作执行一次实际的EMA计算。
  • update(): 更新模型的EMA版本。

  • ema(input): 使用EMA模型进行预测。

对于PostHocEMA,额外提供了synthesize_ema_model(sigma_rel)来根据给定的sigma_rel合成一个新的EMA模型。

总结

通过上述步骤,您可以有效地在Pytorch项目中集成EMA-Pytorch库,无论是实时跟踪模型参数的移动平均还是后期合成更优的EMA模型。确保正确配置参数和更新策略,以充分利用指数移动平均带来的好处。

ema-pytorch A simple way to keep track of an Exponential Moving Average (EMA) version of your pytorch model ema-pytorch 项目地址: https://gitcode.com/gh_mirrors/em/ema-pytorch

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

胡彬燕

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值