表格检测与识别项目下载及安装教程
table-detect 项目地址: https://gitcode.com/gh_mirrors/ta/table-detect
1. 项目介绍
table-detect
是一个用于表格检测和表格单元格定位的开源项目。该项目结合了 YOLO 和 UNet 两种深度学习模型,能够有效地检测图像中的表格并识别表格中的单元格。通过该项目,用户可以轻松地将表格内容提取并输出到 Excel 文件中。
2. 项目下载位置
要下载 table-detect
项目,请使用以下命令:
git clone https://github.com/chineseocr/table-detect.git
3. 项目安装环境配置
在安装项目之前,请确保您的系统已经安装了以下依赖项:
- Python 3.6 或更高版本
- TensorFlow 2.x
- OpenCV
- NumPy
- Pandas
您可以使用以下命令安装这些依赖项:
pip install tensorflow opencv-python numpy pandas
环境配置示例
4. 项目安装方式
下载并解压项目后,进入项目目录并安装所需的 Python 包:
cd table-detect
pip install -r requirements.txt
5. 项目处理脚本
表格检测
要检测图像中的表格,请使用以下命令:
python table_detect.py --jpgPath img/table-detect.jpg
表格识别并输出到 Excel
要识别表格并将结果输出到 Excel 文件中,请使用以下命令:
python table_ceil.py --isToExcel True --jpgPath img/table-detect.jpg
训练表格线
如果您需要训练表格线模型,请使用以下命令:
python train/train.py
在训练之前,请确保您已经使用 labelme
工具标注了表格数据。
通过以上步骤,您可以成功下载、安装并使用 table-detect
项目进行表格检测和识别。
table-detect 项目地址: https://gitcode.com/gh_mirrors/ta/table-detect
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考