Android Speex 音频降噪与回声消除示例

Android Speex 音频降噪与回声消除示例

【下载地址】AndroidSpeex音频降噪与回声消除示例 这是一个专为Android开发者设计的音频处理示例项目,基于Speex库实现高效的音频降噪与回声消除功能。通过集成该示例代码,开发者可以显著提升音频播放质量,减少环境噪音和回声干扰,尤其在语音通话或音频录制场景中效果尤为突出。项目提供了清晰的代码框架,便于开发者快速上手并根据实际需求进行定制优化。无论是学习音频处理技术,还是为应用添加专业级音频增强功能,这个开源项目都是一个实用且高效的起点。 【下载地址】AndroidSpeex音频降噪与回声消除示例 项目地址: https://gitcode.com/Universal-Tool/eb1b7

简介

本资源库是一个针对Android平台开发的音频处理示例。它基于Speex库,展示了如何在Android应用中实现音频降噪和回声消除,从而提高音频播放的质量。通过该示例,开发者可以了解如何利用Speex对音频信号进行处理,以达到降低噪音和消除回声的效果。

功能

  • 音频降噪:通过Speex的处理,有效降低环境噪音,提升音频清晰度。
  • 回声消除:减少或消除因声音反射产生的回声,改善通话或音频播放体验。

使用说明

在您的Android项目中集成此示例代码前,请确保已经正确配置了Speex库。该示例代码提供了一个基础的实现框架,您可以根据实际需求进行调整和优化。

注意事项

  • 请确保遵守所有相关的开源协议和版权声明。
  • 该示例代码仅供学习和研究使用,未经授权不得用于商业用途。

免责声明

本示例代码仅供参考和学习,对于使用过程中可能出现的任何问题,作者概不负责。在使用代码时,请自行承担相应的风险和责任。

【下载地址】AndroidSpeex音频降噪与回声消除示例 这是一个专为Android开发者设计的音频处理示例项目,基于Speex库实现高效的音频降噪与回声消除功能。通过集成该示例代码,开发者可以显著提升音频播放质量,减少环境噪音和回声干扰,尤其在语音通话或音频录制场景中效果尤为突出。项目提供了清晰的代码框架,便于开发者快速上手并根据实际需求进行定制优化。无论是学习音频处理技术,还是为应用添加专业级音频增强功能,这个开源项目都是一个实用且高效的起点。 【下载地址】AndroidSpeex音频降噪与回声消除示例 项目地址: https://gitcode.com/Universal-Tool/eb1b7

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

The echo canceller is based on the MDF algorithm described in: J. S. Soo, K. K. Pang Multidelay block frequency adaptive filter, IEEE Trans. Acoust. Speech Signal Process., Vol. ASSP-38, No. 2, February 1990. We use the Alternatively Updated MDF (AUMDF) variant. Robustness to double-talk is achieved using a variable learning rate as described in: Valin, J.-M., On Adjusting the Learning Rate in Frequency Domain Echo Cancellation With Double-Talk. IEEE Transactions on Audio, Speech and Language Processing, Vol. 15, No. 3, pp. 1030-1034, 2007. http://people.xiph.org/~jm/papers/valin_taslp2006.pdf There is no explicit double-talk detection, but a continuous variation in the learning rate based on residual echo, double-talk and background noise. About the fixed-point version: All the signals are represented with 16-bit words. The filter weights are represented with 32-bit words, but only the top 16 bits are used in most cases. The lower 16 bits are completely unreliable (due to the fact that the update is done only on the top bits), but help in the adaptation -- probably by removing a "threshold effect" due to quantization (rounding going to zero) when the gradient is small. Another kludge that seems to work good: when performing the weight update, we only move half the way toward the "goal" this seems to reduce the effect of quantization noise in the update phase. This can be seen as applying a gradient descent on a "soft constraint" instead of having a hard constraint.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

蒙跃旖

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值