pickle.PicklingError: Can't pickle <function...> pycharm2023运行报错解决方案

#pickle.PicklingError: Can't pickle <function...> pycharm2023运行报错解决方案

去发现同类优质开源项目:https://gitcode.com/

在Python开发过程中,使用pickle模块进行对象序列化时,可能会遇到pickle.PicklingError: Can't pickle <function...>的运行报错。本仓库提供的资源文件为您详细解析了这一错误的原因,并提供了相应的解决方法。

文件描述

本资源文件重点介绍了如何在PyCharm 2023环境下解决pickle模块在多进程程序中出现的序列化错误。内容涵盖错误原因分析以及具体解决方案,帮助您快速定位问题并顺利运行程序。

使用说明

  1. 下载本资源文件至您的本地环境。
  2. 解压文件,阅读文档,了解错误原因及解决方法。
  3. 根据提供的解决方案,调整您的代码,确保程序能够正常运行。

希望这个资源文件能够为您解决开发过程中遇到的问题。如果您有其他问题或建议,请在相应的问题追踪平台上提出。

去发现同类优质开源项目:https://gitcode.com/

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

/home/cw/anaconda3/bin/conda run -n GPU_pytorch --no-capture-output python /tmp/pycharm_project_924/test.py Traceback (most recent call last): File "/tmp/pycharm_project_924/test.py", line 33, in <module> model=torch.load("cw_1.pth") File "/home/cw/.conda/envs/GPU_pytorch/lib/python3.9/site-packages/torch/serialization.py", line 1470, in load raise pickle.UnpicklingError(_get_wo_message(str(e))) from None _pickle.UnpicklingError: Weights only load failed. This file can still be loaded, to do so you have two options, do those steps only if you trust the source of the checkpoint. (1) In PyTorch 2.6, we changed the default value of the `weights_only` argument in `torch.load` from `False` to `True`. Re-running `torch.load` with `weights_only` set to `False` will likely succeed, but it can result in arbitrary code execution. Do it only if you got the file from a trusted source. (2) Alternatively, to load with `weights_only=True` please check the recommended steps in the following error message. WeightsUnpickler error: Unsupported global: GLOBAL lossfunction.Model was not an allowed global by default. Please use `torch.serialization.add_safe_globals([Model])` or the `torch.serialization.safe_globals([Model])` context manager to allowlist this global if you trust this class/function. Check the documentation of torch.load to learn more about types accepted by default with weights_only https://pytorch.org/docs/stable/generated/torch.load.html. ERROR conda.cli.main_run:execute(33): Subprocess for 'conda run ['python', '/tmp/pycharm_project_924/test.py']' command failed. (See above for error) 进程已结束,退出代码为 1
03-27
### 解决方案 在Python中,`_pickle.PicklingError: Can't pickle <class>` 错误通常发生在尝试序列化某些对象时。此错误表明该类未实现可被 `pickle` 序列化的特性[^1]。 #### 原因分析 当一个类的对象不可被序列化时,可能的原因包括但不限于以下几点: - 类定义位于动态创建的函数或方法内部。 - 类依赖于外部资源(如文件句柄、网络连接等),这些资源本身无法被序列化。 - 类中存在对 lambda 表达式的引用或其他匿名函数,而这些也无法被序列化。 #### 实现可序列化的类设计 为了使自定义类能够支持序列化操作,可以遵循以下几个原则: 1. **确保类及其成员均可被序列化** 如果类中的属性是非标准数据类型或者复杂结构,则需要确认它们也实现了序列化接口。如果某个属性不需要保存到磁盘上,在初始化阶段可以通过设置默认值来跳过它[^2]。 2. **重写 __getstate__ 和 __setstate__ 方法** 对于复杂的类实例,可以通过重新定义这两个特殊的方法来自定义其状态管理逻辑。这允许开发者控制哪些部分会被实际存储以及如何恢复那些信息[^3]。 ```python import pickle class MyClass: def __init__(self, name, resource=None): self.name = name # 'resource' 是一个假设的例子,表示某种不可串行化的资源 self.resource = resource def __getstate__(self): state = self.__dict__.copy() del state['resource'] # 删除不能被序列化的字段 return state def __setstate__(self, state): self.__dict__.update(state) self.resource = None # 初始化为None 或者其他安全值 obj = MyClass("Test", open('file.txt', 'r')) serialized_data = pickle.dumps(obj) # 正常工作不会抛出异常 deserialized_obj = pickle.loads(serialized_data) print(deserialized_obj.name) # 输出 Test ``` #### 使用 dill 替代 standard library 的 pickle 有时即使调整了类的设计仍然遇到困难,这时可以选择第三方库 `dill` ,它可以处理更广泛的 Python 数据类型和构造形式[^4]。 ```python import dill as pickle def my_function(): pass lambda_func = lambda x: x * 2 complex_object = {"func": my_function, "lambda": lambda_func} with open('data.pkl', 'wb') as f: pickle.dump(complex_object, f) # 成功完成dump过程 with open('data.pkl', 'rb') as f: loaded_complex_object = pickle.load(f) print(loaded_complex_object["lambda"](5)) # 结果应为10 ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

柏昕凤Driscoll

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值