SA-UNet: 用于视网膜血管分割的开源代码
去发现同类优质开源项目:https://gitcode.com/
此代码库为“用于视网膜血管分割的空间注意U-Net”论文的官方开源实现。本研究由布达佩斯技术经济大学(CME)的郭长禄(Changlu Guo)编写,并在DRIVE和CHASE DB1数据集上展示了最新的性能成果。
简介
本代码适用于在Ubuntu 16.04上进行训练和评估,同时也兼容Windows和OS系统。数据集扩充包括随机轮换、增加高斯噪声、色彩抖动以及水平、垂直和对角线翻转等操作。如果用户不希望进行数据扩充,可以直接下载未经处理的原始数据。
环境要求
- 凯拉斯(Keras)版本:2.3.1
- Tensorflow版本:1.14.0
凯拉斯(Keras)是一个用Python编写的高度模块化的神经网络库,可以在TensorFlow或Theano上运行,其开发重点是实现快速实验,帮助用户以最短的延迟将想法转化为实践。
快速开始
- 训练运行:请参考项目内的训练脚本开始训练过程。
- 测验运行:运行测试脚本以评估模型性能。
- 评估CHASE DB1数据集:执行
Eval_chase.py
脚本进行评估。
注意事项
- 请确保您的环境满足以上版本要求,以保证代码的正常运行。
- 请遵守开源协议,合理使用和分享代码。
通过本项目,我们希望能够促进视网膜血管分割技术在学术和工业界的应用与发展。
去发现同类优质开源项目:https://gitcode.com/
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考