RSOD武汉大学遥感图像数据集介绍
RSOD Dataset 是武汉大学发布的一款专业的遥感图像物体检测数据集,旨在为遥感图像处理领域的研究者提供有效的数据支持。该数据集包含了丰富的物体类别和数量,非常适合用于物体检测算法的训练和评估。
数据集内容
RSOD Dataset 包括以下四类目标:
- 飞机:共 446 张图像,包含 4993 架飞机
- 操场:共 189 张图像,包含 191 个操场
- 立交桥:共 176 张图像,包含 180 座立交桥
- 油桶:共 165 张图像,包含 1586 个油桶
这些图像覆盖了多种场景和角度,为物体检测算法提供了丰富的训练样本。
数据集来源
该数据集由武汉大学于 2015 年发布,是遥感图像处理领域的重要资源。相关论文《Elliptic Fourier transformation-based histograms of oriented gradients for rotationally invariant object detection in remote-sensing images》和《Accurate Object Localization in Remote Sensing Images Based on Convolutional Neural Networks》对该数据集进行了详细的研究和讨论。
使用说明
在使用该数据集时,请遵守相关法律法规和数据使用规范,尊重数据集的版权和知识产权。希望该数据集能为您的遥感图像处理研究带来便利。
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考