pyGAT图自注意网络PyTorch版本代码
去发现同类优质开源项目:https://gitcode.com/
pyGAT是基于图自注意网络(Graph Attention Networks, GATs)的PyTorch实现。该网络利用attention机制对图结构数据进行高效的特征提取。
特性
- 注意力机制:pyGAT采用attention机制来衡量邻接节点对当前节点的重要性,从而能够更加精确地捕捉图结构中的依赖关系。
- 邻接矩阵作为Mask:通过使用邻接矩阵作为mask,pyGAT可以有效地控制attention的计算范围,只关注与当前节点直接相连的节点。
- 多注意力头:pyGAT引入了注意力头(attention heads)机制,通过扩展注意力机制的channel,可以进一步提高模型的表达能力。
使用说明
- 克隆或下载本仓库。
- 在您的Python环境中安装所需的依赖库,主要是PyTorch。
- 根据具体需求修改代码,实现您的功能。
注意事项
- 请确保您的Python环境已安装PyTorch库。
- 根据您的任务需求,对代码进行相应的调整和优化。
感谢您使用pyGAT,希望它能为您的项目带来便利。
去发现同类优质开源项目:https://gitcode.com/
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考