pyGAT图自注意网络PyTorch版本代码

pyGAT图自注意网络PyTorch版本代码

去发现同类优质开源项目:https://gitcode.com/

pyGAT是基于图自注意网络(Graph Attention Networks, GATs)的PyTorch实现。该网络利用attention机制对图结构数据进行高效的特征提取。

特性

  • 注意力机制:pyGAT采用attention机制来衡量邻接节点对当前节点的重要性,从而能够更加精确地捕捉图结构中的依赖关系。
  • 邻接矩阵作为Mask:通过使用邻接矩阵作为mask,pyGAT可以有效地控制attention的计算范围,只关注与当前节点直接相连的节点。
  • 多注意力头:pyGAT引入了注意力头(attention heads)机制,通过扩展注意力机制的channel,可以进一步提高模型的表达能力。

使用说明

  1. 克隆或下载本仓库。
  2. 在您的Python环境中安装所需的依赖库,主要是PyTorch。
  3. 根据具体需求修改代码,实现您的功能。

注意事项

  • 请确保您的Python环境已安装PyTorch库。
  • 根据您的任务需求,对代码进行相应的调整和优化。

感谢您使用pyGAT,希望它能为您的项目带来便利。

去发现同类优质开源项目:https://gitcode.com/

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

常韧晏Zane

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值