在Cora和Citeseer数据集上使用GCN网络实现节点分类
去发现同类优质开源项目:https://gitcode.com/
本文提供了在Cora和Citeseer数据集上使用图卷积神经网络(GCN)进行节点分类的完整代码实现。资源包括GCN分类网络的构建、数据预处理以及节点分类网络的训练和测试。
资源内容
- GCN网络构建代码
- Cora和Citeseer数据集预处理代码
- 节点分类网络训练代码
- 节点分类网络测试代码
使用说明
- 数据预处理:首先对Cora和Citeseer数据集进行必要的预处理,包括读取数据、构建图表示等。
- 网络构建:搭建GCN分类网络模型,定义网络的层数、每层的神经元数等参数。
- 训练与测试:使用预处理后的数据对GCN模型进行训练,并在测试集上评估模型的性能。
注意事项
- 请确保安装了必要的Python库,例如
networkx
、numpy
和scikit-learn
。 - 根据您的计算环境,可能需要调整部分代码以满足硬件和软件要求。
感谢您的使用,希望本资源对您的研究或学习有所帮助。
去发现同类优质开源项目:https://gitcode.com/
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考