Supersplat项目处理大型3DGS场景中的异常大尺寸Splat问题

Supersplat项目处理大型3DGS场景中的异常大尺寸Splat问题

背景介绍

在使用Supersplat处理3D高斯泼溅(3DGS)场景时,用户可能会遇到一种特殊情况:当加载大型场景文件(如1平方公里范围)时,即使将缩放调整到最大值,场景中心区域仍然难以观察和编辑。这种情况通常是由于场景中存在异常大尺寸的Splat元素导致的。

问题分析

通过实际案例研究发现,这类问题通常由两种异常Splat引起:

  1. 超大尺寸Splat:这些Splat的尺寸远远超出正常范围,导致场景边界计算异常,但它们本身可能由于浮点数精度问题而无法正常渲染显示。

  2. 完全透明Splat:这些Splat虽然存在但完全透明,对场景渲染没有实际贡献,却会影响场景的整体计算。

解决方案

Supersplat提供了有效的工具来处理这类问题:

  1. 使用直方图工具:通过分析Splat尺寸的分布直方图,可以快速识别并选中异常大尺寸的Splat。

  2. 批量删除功能:选中异常Splat后,可以使用删除功能一次性清除这些干扰元素。

  3. 透明度筛选:通过筛选透明度参数,可以定位并删除完全透明的无效Splat。

操作建议

对于遇到类似问题的用户,建议按照以下步骤操作:

  1. 更新到最新版本的Supersplat(如v0.22.2或更高),以确保拥有最完善的修复工具。

  2. 加载场景后,首先检查Splat尺寸分布情况,重点关注尺寸远大于正常范围的异常值。

  3. 使用选择工具批量选中这些异常Splat并删除。

  4. 检查透明度参数,删除完全透明的无效Splat。

  5. 保存清理后的场景,此时应该可以正常缩放和编辑场景中心区域。

技术原理

这种现象的根本原因在于3DGS场景的边界计算是基于所有Splat的空间分布进行的。当存在极少数超大尺寸Splat时,即使它们不可见,也会导致场景的包围盒(Bounding Box)计算异常扩大,从而影响整个场景的显示比例。通过移除这些异常元素,可以恢复场景的正常显示和编辑功能。

总结

Supersplat作为专业的3DGS场景处理工具,提供了完善的异常检测和修复功能。了解并掌握这些工具的使用方法,可以帮助用户有效处理大型3DGS场景中的各种异常情况,提高工作效率和场景质量。

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

在 Ubuntu 18.04 上复现 3D Gaussian Splatting (3DGS) 项目,涉及多个关键步骤,包括系统依赖项配置、CUDA 支持、C++ 编译器升级以及相关开发工具的安装。以下是详细的实现指南: ### 1. 系统依赖与编译器配置 Ubuntu 18.04 自带的 GCC 和 G++ 版本为 7.x,不支持 C++17 标准,而 3DGS 项目可能依赖 C++17 的特性(如 `std::filesystem`),因此必须升级到 GCC-9 或更高版本。可通过以下命令安装并切换默认版本: ```bash sudo apt update sudo apt install gcc-9 g++-9 sudo update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-9 90 sudo update-alternatives --install /usr/bin/g++ g++ /usr/bin/g++-9 90 ``` 验证版本升级是否成功: ```bash gcc --version g++ --version ``` ### 2. CUDA 安装与配置 3DGS 项目通常依赖 CUDA 加速,官方推荐使用 CUDA 11.8,其他版本(如 11.6)可能存在兼容性问题[^2]。Ubuntu 18.04 的官方仓库不直接提供 CUDA 11.8 的安装包,需手动下载 NVIDIA 官方提供的 `.run` 文件进行安装。 安装前需禁用 Nouveau 驱动: ```bash sudo bash -c "echo blacklist nouveau > /etc/modprobe.d/blacklist-nvidia-nouveau.conf" sudo update-initramfs -u ``` 重启后,下载 CUDA 11.8 安装包并执行安装: ```bash chmod +x cuda_11.8.0_520.61.05_linux.run sudo ./cuda_11.8.0_520.61.05_linux.run ``` 安装完成后,设置环境变量: ```bash echo 'export PATH=/usr/local/cuda-11.8/bin${PATH:+:${PATH}}' >> ~/.bashrc echo 'export LD_LIBRARY_PATH=/usr/local/cuda-11.8/lib64${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}}' >> ~/.bashrc source ~/.bashrc ``` ### 3. 安装 Python 与 PyTorch 环境 3DGS 的训练与推理部分通常依赖 PyTorch 和 CUDA 加速的版本。推荐使用 `conda` 创建虚拟环境以隔离依赖: ```bash conda create -n gaussian_splatting python=3.9 conda activate gaussian_splatting pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu118 ``` ### 4. 安装项目依赖库 3DGS 项目通常依赖 OpenGL、GLFW、Eigen、OpenCV 等库。Ubuntu 18.04 的默认源可能缺少某些较新版本的依赖包,例如 `libpng-dev` 和 `libopencv-dev` 安装时可能遇到依赖问题[^3]。可尝试手动安装或从源码编译 OpenCV: ```bash sudo apt install libgl1 libglfw3 libgles2-mesa-dev libpng-dev ``` 若 OpenCV 安装失败,可使用以下命令从源码安装: ```bash git clone https://github.com/opencv/opencv.git cd opencv mkdir build && cd build cmake .. make -j$(nproc) sudo make install ``` ### 5. 获取并构建 3DGS 项目 克隆官方或社区维护的 3DGS 项目仓库,例如: ```bash git clone https://github.com/graphdeco-inria/gaussian-splatting.git cd gaussian-splatting mkdir build && cd build cmake .. make -j$(nproc) ``` 若构建过程中报错,检查是否缺少依赖项或 CUDA 配置错误。 ### 6. 运行与可视化 完成构建后,可运行示例数据集进行测试: ```bash cd .. python render.py --model_path output/your_model --iteration 7000 ``` 若需远程可视化,可考虑使用 `superspl.at/editor` 在线平台进行点云渲染[^2]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

阮娆可

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值