PPO-PyTorch 项目常见问题解决方案

PPO-PyTorch 项目常见问题解决方案

PPO-PyTorch Minimal implementation of clipped objective Proximal Policy Optimization (PPO) in PyTorch PPO-PyTorch 项目地址: https://gitcode.com/gh_mirrors/pp/PPO-PyTorch

项目基础介绍

PPO-PyTorch 是一个基于 PyTorch 框架的 Proximal Policy Optimization (PPO) 算法的极简实现。该项目主要用于 OpenAI gym 环境中的强化学习任务。PPO 是一种策略优化算法,通过裁剪目标函数来限制策略更新的幅度,从而提高训练的稳定性。该项目适合初学者理解和学习 PPO 算法,同时也适用于复杂环境的实验,但可能需要进行一些超参数调整或代码修改。

主要编程语言

该项目主要使用 Python 编程语言。

新手使用项目时需要注意的3个问题及解决步骤

问题1:环境配置问题

问题描述:新手在配置环境时可能会遇到依赖库安装失败或版本不兼容的问题。

解决步骤

  1. 检查 Python 版本:确保使用 Python 3.6 或更高版本。
  2. 使用虚拟环境:建议使用 virtualenvconda 创建一个独立的虚拟环境。
  3. 安装依赖库:按照 requirements.txt 文件中的依赖库列表进行安装,可以使用以下命令:
    pip install -r requirements.txt
    
  4. 手动安装缺失库:如果某些库安装失败,可以尝试手动安装,例如:
    pip install numpy gym torch
    

问题2:训练过程中性能不佳

问题描述:在训练过程中,模型性能不佳,奖励值不理想。

解决步骤

  1. 调整超参数:检查 train.py 文件中的超参数设置,特别是学习率(lr)、折扣因子(gamma)和裁剪参数(clip_param)。
  2. 增加训练步数:如果训练步数不足,可以增加 num_episodesnum_timesteps
  3. 调整动作标准差:对于连续动作空间,可以调整 action_std 参数,以提高训练的稳定性。
  4. 使用预训练模型:可以尝试使用预训练模型进行测试,以验证环境配置是否正确。

问题3:无法生成训练结果的图表

问题描述:训练完成后,无法生成训练结果的图表或 GIF。

解决步骤

  1. 检查日志文件:确保训练过程中生成了日志文件(.csv 格式),这些文件通常保存在 PPO_logs 目录下。
  2. 运行图表生成脚本:使用 plot_graph.py 脚本生成图表,命令如下:
    python plot_graph.py
    
  3. 安装必要的库:确保安装了生成图表所需的库,如 matplotlibpandas
  4. 生成 GIF:如果需要生成 GIF,可以使用 make_gif.py 脚本,命令如下:
    python make_gif.py
    

通过以上步骤,新手可以更好地理解和使用 PPO-PyTorch 项目,解决常见的问题。

PPO-PyTorch Minimal implementation of clipped objective Proximal Policy Optimization (PPO) in PyTorch PPO-PyTorch 项目地址: https://gitcode.com/gh_mirrors/pp/PPO-PyTorch

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

代码报错:UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at C:\cb\pytorch_1000000000000\work\aten\src\ATen\native\ReduceOps.cpp:1808.) rewards = (rewards - rewards.mean()) / (rewards.std() + 1e-7) D:\anaconda\envs\9-25-pytorch\Lib\site-packages\torch\nn\modules\loss.py:538: UserWarning: Using a target size (torch.Size([1])) that is different to the input size (torch.Size([])). This will likely lead to incorrect results due to broadcasting. Please ensure they have the same size. return F.mse_loss(input, target, reduction=self.reduction) Traceback (most recent call last): File "D:\python草稿程序\ppo-uav-5\main.py", line 585, in <module> train_uav_env() File "D:\python草稿程序\ppo-uav-5\main.py", line 483, in train_uav_env ppo.update() File "D:\python草稿程序\ppo-uav-5\PPO.py", line 190, in update logprobs_cont, logprobs_disc, state_values, dist_entropy_cont, dist_entropy_disc = self.policy.evaluate( ^^^^^^^^^^^^^^^^^^^^^ File "D:\python草稿程序\ppo-uav-5\PPO.py", line 110, in evaluate dist_continuous = MultivariateNormal(action_mean, cov_mat) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "D:\anaconda\envs\9-25-pytorch\Lib\site-packages\torch\distributions\multivariate_normal.py", line 178, in __init__ super().__init__(batch_shape, event_shape, validate_args=validate_args) File "D:\anaconda\envs\9-25-pytorch\Lib\site-packages\torch\distributions\distribution.py", line 70, in __init__ raise ValueError( ValueError: Expected parameter loc (Tensor of shape (2,)) of distribution MultivariateNormal(loc: torch.Size([2]), covariance_matrix: torch.Size([2, 2])) to satisfy the constraint IndependentConstraint(Real(), 1), but found invalid values: tensor([nan, nan], device='cuda:0', grad_fn=<ExpandBackward0>)
03-18
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

田楚千Rejoicing

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值