U-Net PyTorch 项目推荐
项目基础介绍和主要编程语言
U-Net PyTorch 是一个基于 PyTorch 框架的开源项目,专门用于实现 U-Net 卷积神经网络模型。U-Net 是一种广泛应用于生物医学图像分割的深度学习模型,尤其适用于需要浅层特征的医药数据集。该项目的主要编程语言是 Python,并且依赖于 PyTorch 深度学习框架。
项目核心功能
该项目的主要功能包括:
- U-Net 模型实现:提供了完整的 U-Net 模型代码,支持多种主干网络(如 VGG、ResNet50)。
- 数据集处理:支持 VOC 格式数据集的处理,包括数据标注、数据增强等。
- 模型训练:提供了详细的训练脚本,支持自定义数据集的训练,并提供了多种优化器(如 Adam、SGD)和学习率调整策略(如 step、cos 学习率下降法)。
- 模型预测:支持使用预训练权重进行图像分割预测,并提供了 FPS 测试和视频检测功能。
- 模型评估:提供了 mIOU 评估脚本,用于评估模型的分割性能。
项目最近更新的功能
最近更新的功能包括:
-
2022-03 更新:
- 支持 step 和 cos 学习率下降法。
- 支持 Adam 和 SGD 优化器选择。
- 支持学习率根据 batch_size 自适应调整。
-
2020-08 更新:
- 创建仓库,支持多 backbone。
- 支持数据 mIOU 评估。
- 支持标注数据处理。
- 提供了大量代码注释。
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考