【免费下载】 YOLOv8 源代码下载仓库

YOLOv8 源代码下载仓库

【下载地址】YOLOv8源代码下载仓库 本仓库提供了一个名为 `yolov8` 的文件夹,其中包含了 YOLOv8 的源代码。YOLOv8 是一个先进的对象检测模型,适用于各种计算机视觉任务 【下载地址】YOLOv8源代码下载仓库 项目地址: https://gitcode.com/open-source-toolkit/174a0

简介

本仓库提供了一个名为 yolov8 的文件夹,其中包含了 YOLOv8 的源代码。YOLOv8 是一个先进的对象检测模型,适用于各种计算机视觉任务。

内容

  • yolov8 文件夹: 包含 YOLOv8 的完整源代码。

使用说明

  1. 下载: 点击仓库页面上的下载按钮,获取 yolov8 文件夹。
  2. 解压: 将下载的压缩包解压到您的项目目录中。
  3. 配置环境: 根据 YOLOv8 的文档配置所需的运行环境。
  4. 运行: 按照 YOLOv8 的说明运行代码,开始您的对象检测任务。

注意事项

  • 请确保您的系统满足 YOLOv8 的运行要求。
  • 在使用过程中遇到任何问题,请参考 YOLOv8 的官方文档或社区支持。

贡献

如果您有任何改进建议或发现了代码中的问题,欢迎提交 Issue 或 Pull Request。

许可证

本仓库中的代码遵循相应的开源许可证,请在使用前仔细阅读相关许可证文件。


感谢您使用本仓库,祝您在对象检测任务中取得成功!

【下载地址】YOLOv8源代码下载仓库 本仓库提供了一个名为 `yolov8` 的文件夹,其中包含了 YOLOv8 的源代码。YOLOv8 是一个先进的对象检测模型,适用于各种计算机视觉任务 【下载地址】YOLOv8源代码下载仓库 项目地址: https://gitcode.com/open-source-toolkit/174a0

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

基于YOLOv8的各种瓶子识别检测系统源码(部署教程+训练好的模型+各项评估指标曲线).zip 平均准确率:0.95 类别:bottle 【资源介绍】 1、ultralytics-main ultralytics-main为YOLOv8源代码,里面涵盖基于yolov8分类、目标检测额、姿态估计、图像分割四部分代码,我们使用的是detect部分,也就是目标检测代码 2、搭建环境 安装anaconda 和 pycharm windows系统、mac系统、Linux系统都适配 在anaconda中新建一个新的envs虚拟空间(可以参考博客来),命令窗口执行:conda create -n YOLOv8 python==3.8 创建完YOLOv8-GUI虚拟空间后,命令窗口执行:source activate YOLOv8 激活虚拟空间 然后就在YOLOv8虚拟空间内安装requirements.txt中的所有安装包,命令窗口执行:pip install -r requirements.txt 使用清华源安装更快 3、训练模型过程 进入到\ultralytics-main\ultralytics\yolo\v8\detect\文件夹下,datasets即为我们需要准备好的数据集,训练其他模型同理。 data文件夹下的bicycle.yaml文件为数据集配置文件,该文件为本人训练自行车检测模型时创建,训练其他模型,可自行创建。博文有介绍https://blog.csdn.net/DeepLearning_?spm=1011.2415.3001.5343 train.py中238行,修改为data = cfg.data or './bicycle.yaml' # or yolo.ClassificationDataset("mnist") 237行修改自己使用的预训练模型 若自己有显卡,修改239行,如我有四张显卡,即改成args = dict(model=model, data=data, device=”0,1,2,3“) 以上配置完成后运行train.py开始训练模型,训练完毕后会在runs/detect/文件夹下生成train*文件夹,里面包含模型和评估指标等 4、推理测试 训练好模型,打开predict.py,修改87行,model = cfg.model or 'yolov8n.pt',把yolov8n.pt换成我们刚才训练完生成的模型路径(在\ultralytics-main\ultralytics\yolo\v8\detect\runs\detect文件夹下),待测试的图片或者视频存放于ultralytics\ultralytics\assets文件夹, 运行predict.py即可,检测结果会在runs/detect/train文件夹下生成。
### YOLOv11 源代码下载链接及注意事项 YOLO(You Only Look Once)系列模型的开发通常由不同的研究团队或开发者维护,因此具体版本的源代码可能并不总是公开可用。根据已知信息,YOLOv10 是由 THU-MIG 团队发布的[^3],但目前并未有官方确认的 YOLOv11 版本发布。如果用户提到的 YOLOv11 并非正式版本,可能是社区中的非官方实现或第三方扩展。 对于下载 YOLOv11 的源代码,建议采取以下方法: 1. **检查官方仓库**:首先访问 YOLO 系列模型的主要开发者 Ultralytics 的 GitHub 仓库[^4],确认是否存在 YOLOv11 的分支或标签。 - Ultralytics 官方仓库地址: [https://github.com/ultralytics/ultralytics](https://github.com/ultralytics/ultralytics) 2. **搜索社区实现**:如果官方未发布 YOLOv11,可以尝试在 GitHub 或其他开源平台上搜索相关项目。例如: ```bash https://github.com/search?q=yolov11&type=repositories ``` 3. **安装依赖项**:若找到相关代码,确保环境配置正确。参考 YOLOv10 的依赖安装方式[^3],可以使用以下命令初始化环境: ```bash pip install -r requirements.txt pip install -e . ``` 4. **模型权重下载**:下载预训练权重文件时,请确保与源代码版本匹配。例如,YOLOv10 使用以下命令下载权重: ```bash wget https://github.com/THU-MIG/yolov10/releases/download/v1.1/yolov10b.pt ``` 需要注意的是,不同版本的 YOLO 模型可能在配置文件中存在差异,例如 `depth_multiple` 和 `width_multiple` 参数会影响网络深度和宽度[^1]。如果 YOLOv11 存在类似的配置文件,请仔细阅读文档以调整参数。 ### 示例代码:验证 YOLO 模型加载 以下是一个简单的 Python 脚本,用于加载 YOLO 模型并进行推理: ```python import torch from ultralytics import YOLO # 加载模型 model = YOLO("yolov11.pt") # 替换为实际的 YOLOv11 权重路径 # 执行推理 results = model("example.jpg") # 替换为测试图像路径 # 输出结果 print(results) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

劳筝千Daphne

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值