Apache Spark 3.0 动态分区裁剪
从数据源读取数据的时候尽可能过滤不必要的数据,减少数据读取,网络传输量
静态分区裁剪(Static Partition Pruning)
-
spark sql 在执行查询的时候根据过滤条件实现谓词下推,分区剪裁,跳过不必要的分区,减少读取数据量
- select * from sales where day_of_week = "mon"
- spark 在编译时会把filter算子下推到数据源,转成数据源查询过滤条件,达到减少读取数据量的目的
-
编译时进行对事实表的分区剪裁优化
-
有星型模式连接查询的情况:
- select * from sales join date on sales.date.id = date.id where date.day_of_week = 'mon'
- 在没有开启动态剪裁的情况,谓词下推的优化发生在维度表date中,事实表sales还是会全量加载,然后执行join
动态分区剪裁
-
动态分区裁剪这个功能是 Spark 3.0 引入的,详见 SPARK-11150、SPARK-28888。
-
基于运行时推断信息进一步分区剪裁
-
开启动态剪裁的情况,上面的计划会在scan sales 生成一个过滤器,先进行过滤
执行动态分区剪裁的条件
spark.sql.optimizer.dynamicPartitionPruning.enabled
参数必须设置为 true- 需要裁减的表必须是分区表,而且分区字段必须在 join 的 on 条件里面
- Join 类型必须是 INNER, LEFT SEMI (左表是分区表), LEFT OUTER (右表是分区表), or RIGHT OUTER (左表是分区表)。
- 满足上面的条件也不一定会触发动态分区裁减,还必须满足
spark.sql.optimizer.dynamicPartitionPruning.useStats
和spark.sql.optimizer.dynamicPartitionPruning.fallbackFilterRatio
两个参数综合评估出一个进行动态分区裁减是否有益的值,满足了才会进行动态分区裁减。 --TODO
相关配置
- spark.sql.optimizer.dynamicPartitionPruning.enabled -- 动态分区剪裁开关
- spark.sql.optimizer.dynamicPartitionPruning.useStats (默认 true) --